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PREFACE

This is a book for a second course in computer programming, after the student
has had a course in BASIC (or possibly PASCAL, FORTRAN, or PL/I). It can
be used at the university level, in community colleges, in secondary schools, or
for self-study. The author uses it at The George Washington University, in the
Department of Electrical Engineering and Computer Science.

: BASIC, and other algebraic languages such as FORTRAN and PASCAL, are to
] a great degree machine-independent. You can write a8 BASIC program for one
computer and expect to run it, with at most only minor changes, on another
computer. In this book, however, one studies assembly language and machine
language, which are totally different for all the different families of computers. A
program written in assembly language for one computer must be completely
rewritten in order to run on a computer of a different family. _

Given this situation, the first decision to be made is which computer to use. In
this book it is assumed that you are using the APPLE, one of the most popular
computers in the world. (By “APPLE” we shall always mean either an APPLE
I+, an APPLE Ilc, an APPLE Ile, or an APPLE III running in emulator mode.)
The APPLE is a computer system, containing a computer called the 6502.* It is the
assembly and machine language of the 6502, then, that is taught in this book.

In order to practice using these languages, you need an assembler. This is a
program which processes assembly language somewhat as the various BASIC
systems on the APPLE process the BASIC language. In this book, we will
assume that you have the LISA 1.5, LISA 2.5 48K, or LISA 2.5 64K assem-
bler.” LISA assemblers have been cited by various surveys as the best assem-
blers for the APPLE, and both the APPLE and the LISA assemblers are available
in a large number of computer stores. If you. have another version of LISA or
another assembler for the APPLE, you can use it with this book as long as you
use its manual from the beginning, and as long as you note those parts of this book
which are specific to the LISA versions given above. You can even use this book
with the ATARI 800 or the VIC-20, although the assembler, the debugging
process, and the basic system subroutines would all be different.

*The 6502, because of the hardware technology it uses, is known as a microprocessor. It is made by
MOS Technology, Inc., of Norristown, Pennsylvania; the APPLE is made by Apple Computer Cor-
poration of Cupertino, California. )

It is made by LazerWare. Note that LISA assemblers have nothing to do with the LISA com-
puter, manufactured by APPLE Computer Corporation.
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Using LISA normally requires that you have at least 48K of memory and a
disk unit. The disk unit, which again costs a few hundred dollars, is very useful
with BASIC as well as with the assembler. Without a disk unit, you have to use
cassette tape units, which are not nearly as fast or reliable, when connected to a
computer. The additional memory, if you do not have as much as 48K, costs even
less and is useful, although not essential, with BASIC; it permits larger programs
and larger arrays to be processed by the APPLE.

Machine language is fundamental to all computers. Every computer proc-
esses only one language directly, and that is its machine language. There are
only two ways for a computer to process any language other than its machine
language. One is by translating programs from another language into its
machine language, and then running the resulting machine language programs.
This process is done by a program which is usually known as a compiler. Com-
pilers exist for BASIC, FORTRAN, PASCAL, and many other languages. The
other way is by having a program which translates one statement of the other
language; then executes that statement; then translates the next statement and
executes that one; and so on indefinitely. Such a program is called an inter-
preter. Most of the BASIC systems on the APPLE are interpreters (although
there are also BASIC compilers for the APPLE).

Machine language is composed entirely of numbers in the binary system,
which is also taught in this book. The analog of GOSUB in BASIC, for exam-

~ ple, is the binary number 00100000 in the machine language of the 6502. Like-

wise, the binary number 0000100010101100 might correspond to the variable J
in some particular program.

Because machine language is so cumbersome to work with, assembly lan-
guage was developed. Assembly language is very much like machine language
except that it uses names instead of numbers. Thus, the variable J in BASIC can
still be called J in assembly language. The analog of GOSUB in the assembly
language of the 6502 is JSR, which stands for ‘‘Jump to a Sub-Routine,”’ just as
GOSUB stands for ‘‘Go to a SUBroutine.”’

The close correspondence between assembly language and machine language

" makes it unnecessary to write a large program directly in machine language. Many

large and successful programs, however, have been written, and continue to be
written, in assembly language. Among these is the APPLE’s monitor program—
the fundamental program that drives the APPLE and allows it to accept and run
machine language programs.

In further study of computer science, it is absolutely necessary to know the
workings of both assembly language and machine language. This is true even if
most of the programs that you actually write during your further study might be
written in some other language, such as PASCAL or C. We feel that it is important
for the student to be fluent in one assembly language, rather than having an
overview of several of them.

Some computer scientists downplay the importance of assembly language. It
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is true that, in the past, many large programs have been written in assembly lan-
guage which perhaps should not have been, due to excessive debugging costs.
But the most successful programs continue, over the years, to be written in
assembly language; these include the APPLE monitor, the CP/M system, and
VISICALC. Generally, programs that require economy of speed or memory,
such as operating systems and interpreters, are written in assembly language in
order to achieve the required performance.

Also, some computer scientists teach machine language first, and then assembly
language. In this book we teach assembly language first, because we expect the
student to have access to an assembler. Machine language knowledge is necessary
in debuggmg, but we do not expect students to program in it directly (as they
might, for example, in a course on programming for hardware logic design).

In this book you will use the knowledge of BASIC* which you presumably
already have. If you do not know BASIC but have learned FORTRAN, PAS-
CAL, or PL/I, you may consult Table 1 in the Appendix, which explains the
BASIC statements used in this book in terms of statements in those other lan-
guages. This book relies heavily on comparisons between BASIC and assembly
language; if you know BASIC, but not very well, you should continue to review
it as you read this book.

Machine language and assembly language have many more types of state-
ments than BASIC does. The 6502 has 56 statement types, and this is actually
quite low—some computers have over three times as many. The purpose of
using BASIC to help explain assembly language and machine language is to get
the student through this complexity as efficiently as possible.

The book is divided into 100 sections, with three exercises per section. For a
fourteen-week, one-semester course, seven sections per week are recommended;
for a ten-week, one-quarter course, you can take eight sections per week and stop
at section 76 (the rest of the book consists of advanced topics). The string-handling
in section 82, the sorting and searching in sections 83-86, and the floating point
processing in sections 97-99, can be done earlier if desired. We should note that a
great amount of effort has been expended in presenting the material in such an
order that no concepts are used before they are explained.

Because of the large number of statement types necessary for doing even sim-
ple problems, we do not recommend that the student start almost immediately
running programs on the computer. Instead, the learning process is based on
written exercises, in a constant stream, three per section, involving all the basic
concepts one must know in order to be an assembly language programimer.

Section 42 through 50 cover the processes of writing complete programs, desk
checking, walkthroughs, editing, assembling, and several debugging techniques,
including stepping, tracing, breakpoint debugging, and assembly-level patching.

*Not necessarily APPLE BASIC, of course.
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All of this is done with specific reference to the APPLE, its monitor program,
and LISA. After section 50, and after every tenth section thereafter, there is a
suggested problem for computer solution. It cannot be urged too strongly that
those who are using the book for self-study actually write these programs, or
programs like them, on an APPLE. Book-knowledge of assembly language and
machine language programming is not enough!

No hardware knowledge is required to understand this book, and very little
hardware-oriented material is presented. A separate course on microcomputer
hardware, interfacing, and software for logic design is recommended after the
student has had the introductory material on assembly language and machine
language presented here. On the other hand, assembly language and machine
language knowledge is necessary in such areas as the construction of assemblers
and compilers, where a knowledge of hardware is normally not required.

Thete is an extensive collection of tables in the Appendix, describing the
6502, LISA, and the APPLE monitor. All the features of LISA described in the
Appendix are available in all versions of LISA. All the 6502 instructions are
covered, but a few features of LISA and a number of features of the APPLE
monitor have been omitted. After you are no more than halfway through this
book, you should be ready to read the APPLE literature on your own.

Discussions of multiplication and division (including subroutines to multiply
and divide) and of floating point are given, even though the 6502 has no multiply
or divide instructions or floating point instructions of any kind. Similarly, quite a
nurmnber of sections are devoted to 16-bit operations, even though the 6502 is an
8-bit machine. We remark that it is far easier to ‘‘pick up’” the machine language
of a 16-bit machine, after having learned on an 8-bit machine, than vice versa,
since you can dften do in one instruction on a 16-bit machine what takes several
instructions, if not an entire subroutine, on an 8-bit machine.

This book could not have been written without the prior existence of two
excellent books on the 6502. These are Programming the 6502 (Berkeley, Sybex,
1978), by my friend and former student Rodnay Zaks; and 6502 Assembly Lan-
guage Programming, (Berkeley, Osborne/McGraw-Hill, 1980), a 600-page book,
with over 150 refefences by Lance Leventhal. Mention should also be made of
Adam Osborme’s encyclopedic An Introduction to Microcomputers, which should
be on every computer scientist’s bookshelf; and the APPLE II Reference Manual
and LISA (the manual), both of which are recommended as reference matenal
supplementary to this book.

Many people helped in the preparation of this book. Ned Rhodes, Jose Sanchez,
Bill Schultheis, and Richard Untied read the book from cover to cover and
suggested numerous improvements and corrections. In addition, the author has
class-tested this book in four successive semesters; every problem has been
assigned, and every student has been exhorted to look for errors and report them.
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1. CODES

In this book you will be learning to program in machine language and in assem-
bly language. This is considerably harder than programming in BASIC or in
FORTRAN, but you will be rewarded by being able to write programs which
are several dozen times faster than typical BASIC programs. Also, you will
gain an understanding of how a computer really works, from the programmer’s
viewpoint.* This will be invaluable to you in further study of computer science.

Almost all of what we have to learn, in machine language and assembly
language programming, is based on the idea of a code.

There is an old children’s game based on codes, which allows you to send secret
messages. Suppose that your mother is making you take piano lessons, and you
would rather be somewhere else. So your secret message is

PIANO LESSONS STINK

Now “count forward” in the alphabet from each of these letters by, let us say, three
positions:

PIANO LESSONS STINK
QJBOP MFTTPOT TUJOL
RKCPQ NGUUQPU UVKPM
SLDQR OHVVRQV VWLQN

(where, in each column, we have counted forward: P, Q, R, S; I, J, K, L; and so
forth). You write a note to a friend of yours that says

SLDQR OHVVRQV VWLQN

and then, if your mother finds it, or your piano teacher finds it, they have no
way of knowing what you were saying (unless they played the game themselves
when they were children).

*Not, however, from the hardware designer’s viewpoint. Computer hardware and logic design is not
taught in this book. See Leventhal’s 6502 Assembly Language Programming for an excellent discus-
sion of the hardware of the 6502.




Of course, your friend might write a note back to you, saying

HVSHFLDOOB VFDOHV

In order to tell what your friend was saying, you have to count backwards

- through the alphabet, like this:

HVSHFLDOOB VFDOHV
GURGEKCNNA UECNGU
FTQFDJBMMZ TDBMEFT
ESPECIALLY SCALES

Note the Y in ESPECIALLY; when we are counting forward, and we get to Z,
we go back to A again. Similarly, when we are counting backward, and we get
to A, we go back to Z again. ,

Another kind of code is a nuniber code, where 1 stands for A because A is the
first letter in the alphabet. If the note you passed to your friend was

16 9114 15 12 5 19 19 15 14 19 19 20 § 14 11

this would be PIANO LESSONS STINK, again, because P is the 16th letter in the
alphabet; 1 is the 9th letter in the.alphabet; and so on. This code, though, would
probably be much too easy for your mother to figure out; but it is the kind of code
most often used in machine language and assembly language.

Codes are fundamental in our study of machine language, because all infor-

" mation in computers is kept in coded form. In your study of FORTRAN or

BASIC you learned that a variable such as K can have a value such as 19, which
is kept in the computer. In this book, we learn that what is kept in the computer
is not really 19 at all, but rather a code for 19. On the 6502, the code is
00010011; this represents the number 19. o

In the same way, alphabetic information is kept in computers in coded form. If
we wanted to keep the sentence PIANO LESSONS STINK in the computer, then
each letter of this sentence would be represented by a code. * On the 6502, the code
for the letter P, for example, is 11010000. Whenever we put information into the
computer, it will be converted into codes; whenever we take information from the
computer and display it, these codes will be decoded. All this is done by code
conversion programs, which we will learn, in time, how to write. Often we will
write programs that we can understand more easily if we pretend that information
is kept in the computer directly; rather than in coded form, but it is always
necessary to understand that this is not actually the case.

*The blank space is also represented by a code. We will learn more about codes for characters iri sec-
tion 24.
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numbers. In the next two sections, we will learn the elementary properties of
binary numbers which we will need.

EXERCISES

1. Decode the following messages according to the first code described above:

(2) ZKDW LV WKH DQVZHU WR SUREOHP ILYH?
*(b) ILTWHHQ LQFKHV.
(c) GDQQB LV FXWH!

2. Decode the following messages according to the second code described
above:

*(a) 135520 1352589144.2085 651435.
(b)7520 12151920, 251521 31855 16!
*c)2391212 251521 715 152120 239208 1357

3. The following message was encoded in both ways (the first and then the
second). Decode it.

The codes in the computer, such as 00010011 and 11010000, are binary
12 416 1217 1518258 26122311 22242212 8.




2. BINARY NUMBERS

In order to understand the 6502, you have to understand binary numbers and the
binary system. Sometimes people learn this as part of learning BASIC, or in
mathematics in high school, but we will assume that you have never seen binary
numbers before and start at the beginning.

Binary numbers are numbers made up of only zeroes and ones. Figure 1
shows the first 16 binary numbers (together with zero).

We may regard binary numbers as a code, very much like a secret code. Thus
111, fér example, is a code for 7; 1001 is a code for 9.

In a computer, all numbers are given by such codes. If the number 9 is kept

* in a computer, it is kept in the form 1001 (or sometimes 00001001, or the like).

Ordinary numbers-such as 7 and 9 are called decimal numbers. The decimal
system is the system, which we all know of giving values to numbers with
more than one digit. Thus

3456 = 3000 + 400 + 50 + 6 = (3 * 1000) + (4 * 100) + (5 * 10) + 6
=3 *10% + (4 = 109 + (5 * 10" + (6 * 107

with the exponents in order: 103, 10%, 10!, 10° (remember that 10! = 10 and
10° = 1).

The binary system is the same as the decimal system, except that 10 is
replaced by 2. Thus, in the binary system we have

1001=(1/*23)+(0*22)+(0*21)+(1*20)
= %8+ (0*4H+©0*2) +(1*1)=8+=09.

Finding the code, such as 1001, for a number like 9 is called converting the
number from decimal to binary. In order to do this, we first find the largest
power of 2 which is no larger than the number we want to convert. For exam-
ple, consider the number 1600. Look at Figure 2; the largest power of 2 which
is not greater than 1600 is 1024.

Now we consider each power of 2 in turn, from that number down to 1. In
each case, we subtract the power of 2 unless the result would be negative. Each

4




Binary Numbers

NUMBER BINARY x 2*

(DECIMAL) NUMBER 0 )
0 0 1 2

1 1 2 4

2 10 3 8

3 11 4 16

4 100 5 32

5 101 6 64

6 110 7 128

7 111 8 256

8 1000 : "9 512

9 1001 _ 10 1024

10 1010 . 11 2048

11 1011 12 4096

12 1100 , 13 8192

13 1101 14 16384

14 1110 15 32768

15 1 ' 16 65536

16 10000 ' R

Figure 2. Powers of 2.

Figure 1. The First 16 Binary Numbers.

time we subtract a power of 2, we put 1 in the binary number; each time we do
not subtract, we put 0 in the binary number. (See Figure 3.) When we are done,
we read off the answer from top to bottom; in this case it is 11001000000.
Another example is also given in Figure 3, in which 1331, converted to binary,
is 10100110011.

Finding the number, such as 9, having a binary code like 1001 is also called
converting, from binary to decimal. This is easier than converting the other
way. We write out the digits of the number, as in Figure 4, and above each digit
we write a power of 2 (from Figure 2), starting at the right. Now we add the
powers of 2 that correspond to places in the binary number where a 1 appears.
In each case in Figure 4, we can see that the same number which we converted
from decimal to binary in Figure 3 is converted back to decimal.

A binary digit is called a bit. Thus the binary number 11001000000 contains
eleven bits. (The phrase ‘‘Blnary digiT"’ is contracted to *‘BIT.””)

EXERCISES
1. Convert the following decimal numbers to binary:

*(a) 100
(b) 39
*(c) 128




Binary Numbers

1600 1331
—1024 1 —1024 1
576 307
-512 1 (512) 0
64 307
(256) 0 —256 1
64 51
(128) 0 (128) 0
64 51
—64 1 (64 0
0 51
(32) 0 -32 1
0 19
(16) 0 —16 1
0 . . 3
(8) 0 8) 0
0 ) 3
4) 0 4 0
0 3
1(2) 0 2) -2 1
0 1
. 0 (1) -1 1
et 0
ANSWER = 11001000000 ANSWER = 10100110011
Figure 3. Conversion from Decimal to Binary.
1024 515 256 128 64 32 1684 2 1
1 1 0 O 1 0 000 O©0 O
1024 + 512 + 64 = 1600
1024 512 256 128 64 32 1684 2 1
1 0 1 0 0 1 100 1 1
1024 +;56 + 32 + 16 +2+1 = 1331

(a) 1000110
*(b) 10001100
(o) 111111

i " Figure 4. Conversion from Binary to Decimal.

2. Convert the following binary numbers to decimal:

3. The following message was coded acéording to the second scheme of sec-




tion 1, and then by converting each decimal number to binary. Decode it.

1001 11101 1100 101 1 10010 1110 1001 1110 111
110 1111 10101 10100 11 1111 1101 10000 10101 10100 101 10010 10011.

Binary Numbers 7 i ‘
|
|
|




3. ADDING AND SUBTRACTING IN
BINARY

i = Since numbers are represented in computers in binary form, they are added and
subtracted in this form. We will now learn how to add and subtract binary
numbers. In the binary system, the rules for adding and subtracting numbers of
more than one digit are exactly the same as they are in the decimal system, with
2 substituted for 10. ’

Consider how we add two numbers, such as

6543
+2481
9024

We go from right to left, as follows:

(1) 3and 1is 4. ‘

(2) 4 and 8 is 12; bring down the 2 and carry the 1.

(3) 1and 5 and 4 is 10; bring down the 0 and carry the 1.
(4) land6and2is 9.

In the same way, we can add in binary:

1010
+110
s 10000

Again we go from right to left:

(1) 0and 01is Q.

(2) 1 and 1 is 10 (remember that 2, in binary, is 10); bring down the O and
carry the 1. ’

(3) 1 and 0 and 1 is 10; bring down the O and carry the 1.

(4) 1 and 1 is 10; since we are at the end, bring down the 10, just as we
would do with decimal numbers.

8




Adding and Subtracting in Binary

9

Referring to Figure 1, we can see that the answer is right. We are really
adding 10 + 6 = 16. If we convert all three numbers to binary, 10 is'1010; 6 is
110; and 16 is 10000.

(Sometimes decimal numbers can be confused with binary numbers. When
we add 10 + 6 = 16, we mean 10 as a decimal number, not 10 as a binary
number. If we want to avoid confusion, we write the base—10 or 2—as a sub-
script, and the decimal or binary number in parentheses. Thus (10), means 10 as
a binary number; (10);o means 10 as a decimal number.)

Subtraction also follows the same rules in binary as in decimal. Consider

3528
—1574
1954

Here we go as follows, from right to left:

(1) 8 minus 4 is 4. .

(2) 12 minus 7 is 5; borrow the 1.

(3) 14 minus 5 (not 15 minus 5, because 1 has been borrowed) is 9; borrow
another 1.

(4) 2 minus 1 (not 3 minus 1)is 1.

Subtracting in binary goes the same way:

1100
—110
110

Proceeding from right to left:

(1) 0 minus 0is 0.
(2) 10 minus 1 is 1 (that is, 2 minus 1 is 1); borrow the 1.
(3) 10 (not 11, since we borrowed the 1) minus 11s 1.

Figure 1 again shows us that the answer is right; we have subtracted 12 -6 = 6.
All these additions and subtractions are illustrated in Figure 5. The number 6 could
also have been expressed as 0110, rather than 110,and we could have subtracted
as follows:

1100
—0110
0110

The extra zero at the beginning of 0110 is called a leading zero. lLeading
zeroes make no difference in the value of a binary number, but they are often
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Adding and Subtracting in Binary 1
used, particularly when we want all our binary numbers to have the same
number of bits.

By looking at Figure 1, we can see that putting an extra zero at the end of a
binary number is equivalent to multiplying that number by 2. Thus, for exam-
ple, 110 in binary represents 6, while 1100 in binary represents 12, or 6 * 2.
This, of course, is like multiplying decimal numbers by 10; thus adding a zero
to 6 gives 60, or 6 * 10. A related fact is that all even numbers, in binary, end
with a zero, while all odd numbers end with a 1.

EXERCISES
1. Perform the following additions in binary:

(a) 100010 *b) 1101 (c) 110110
+10101 +1011 , +1010

2. Perform the following subtractions in binary:

*a) 110111 (b) 100110 *(c) 100101
—100100 —1011 —111

3. Add the following column of binary numbers; then convert each number to
decimal, add the decimal numbers, and verify that the sum of one column
is the conversion of the sum of the other column:

11101
1011
110
101
1000
11 -
11001

(The following shortcut may be useful. Suppose that the sum of one column
of bits is 6. In binary, this is 110, and you would bring down the 0 and carry
11. But it is simpler to carry 3—that is, half of 6—as a decimal number, and
add to it the bits in the next column. The number brought down is 0, because
6 is even, and would be 1 if the sum were odd. Only in the leftmost column
is it necessary for the sum to be brought down in binary.)




4. THE HEXADECIMAL SYSTEM

i We have mentioned that 2 is the base of the binary system, which means that
| there are two digits—O0 and 1-—and the system is based on the powers of 2.
| Similarly, 10 is the base of the decimal system. There are also other systems,
i with bases other than 2 and 10. The most often used of these is the hexadecimal
system, which has the base 16.* )

There are sixteen digits in the hexadecimal system—0, 1,2,3,4,5,6,7, 8,
9, A, B, C, D, E, and F. Numbers in the hexadecimal system have values like
those in the decimal system, with 16 substituted for 10. Thus in the decimal system
we have

3 % 10°
+4 * 10?
+5 % 10!
+6 * 10°

3456 =

(see section 2), whereas in the hexadecimal system we have

F , 3% 16° 3 % 4096 12288
Vi _ +4x=16* _ +4x 256 _ + 1024
¥ M6 = 154160 T 455 16 + 80
¥ +6 % 160 +6% 1 + 6
} 13398

(The first four powers of 16 are all we have to know: 16! = 16, 162 = 256,
16> = 4096, and 16* = 65536.)
| This is the way in which a hexadecimal number is converted into decimal. To
| convert a decimal number into hexadecimal, we first convert the decimal

*The proper name for a system with base 16 is the ‘‘sexadecimal’’ system; but the hexadecimal sys-
tem was first introduced to the computing world in 1963 by IBM, and IBM setiled on a more
decorous name for the system.
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number into binary (as in Figure 3) and then convert this binary number into
hexadecimal as follows:

(1) Divide the binary number into groups of four bits, starting from the right.
(2) Convert each of these groups into a single hexadecimal digit. (See Fig-
ure 6.)

Conversion from hexadecimal to binary works the same way in reverse (again
see Figure 6):

(1) Express each hexadecimal digit as a group of four bits.
(2) Run all these bits together to produce the given binary number.

We can see from Figure 6 that converting between binary and hexadecimal is
easier than the other conversions we have done. Let us see why this method
works. Consider the binary number 1000101011010010; we can write

125 +0%2% +0%28 +0=x22
120 + 0%210 4 1 %27+ 028
127 +1%20+0%25 + 1 %2
022 +0+22+ 12 +0=20
=212 % (122 4+0%22+0x%20 +0x20)
+ 28 (1 %22+ 022+ 1 %204+ 0%2)
+ 2% 1+ + 1224+ 020 +1%2%)
+ 0% 022 +0%x22+1=%21 +0=x20)
=2248+ 28510+ 2¢%13+20%2
=28+ 210+ 2N # 13+ Y)W x2
=16 %8 + 162 % 10 + 16" * 13 + 16" = 2
= (8AD2);s (thatis, 8AD2 in hexadecimal).

(1000101011010010),

+ o+

As we can see, the conversion technique depends on the fact that 16 is a power
of 2.

The hexadecimal system is very widely used in machine language program-
ming. This is because we often work with very large binary numbers, which
can be confusing. If we write a binary number such as 1011011101001000, it is
easy to make mistakes because of the large number of zeroes and ones. Since
we can convert a binary number to hexadecimal so easily, and vice versa, it is
better to keep all binary numbers in hexadecimal form, unless, for some reason,
we need to examine the individual bits. For example, C8, in hexadecimal, with
the leftmost bit changed, becomes 48, because C8 is 11001000 in binary;
changing the leftmost bit of this results in 01001000; and this, converted back
to hexadecimal, is 48.




_The Hexadecimal System

Binary 1000101011010010 Binary Hexadecimal
0000 0
1000 1010 1101 0010 0001 1
0010 2
8 A D 2 0011 3
Hexadecimal 8AD2 0100 4
0101 5
0110 6
0111 7
: 1000 8
Hexadecimal 8AD2 1001 9
1010 A
8§ A D 2 1011 B
1100 C
1000 1010 1101 0010 - 1101 D
, 1110 E
Binary 1000101011010010 1111 F

Figure 6. Conversion Between Binary and Hexadecimal.

- EXERCISES
1. Convert the fcllowing decimal numbers into hexadecimal:

*(a) 100
(b) 781
*(c) 4096

L 2. Convert the following hexadecimal numbers into decimal:

(a) 9A
*(b) 123
(c)ACE -~

*3,  Convert the following string of binary digits into a string of hexadecimal
P digits:

10101111101010111100101010110100110110101101



5. ADDING AND SUBTRACTING IN
HEXADECIMAL

Not only the binary and the decimal systems, but all similar number systems,
have similar addition and subtraction rules. In the hexadecimal system, we need
only to substitute 16 for 10; other than that, the processes are the same as they
are in the decimal system. For example, let us add, in hexadecimal,

B785
+2C84
E409

" The addition here goes as follows, from right to left:

(1) 5and 4 is 9 (just as in the decimal system).

(2) 8 and 8 is 10 (this corresponds to decimal 8 and 8 = 16); bring down the
0 and carry the 1.

(3) 7 and C is 13 (this corresponds to'7 + 12= 19, in decimal); 13 and 1
(from the carry) is 14; bring down the 4, carry the 1.

(4) B and 2 is D, and one more from the carry is E. (This corresponds to
11 + 2 + 1 = 14 in decimal.)

As another example, let us subtract, in hexadecimal,

834E
—2E5A
54F4

This time the procedure, from right to left, is:

(1) E minus A is 4 (this is 14 — 10 = 4 in decimal).

(2) 4 minus 5 becomes 14 minus 5, which is F (not 9; be very careful); bor-
row the 1. (In decimal, 14 — 5 becomes 20 — 5, or 15, which is F in hex-
adecimal.)

(3) 3 minus E becomes 13 minus E, which becomes 12 minus E because we
borrowed 1. This is 4 (corresponding to 18 — 14 = 4), and we borrow 1

again.
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(4) 8 minus 2, or 7 minus 2 because of the borrow, is 5, just as in the
decimal system.

When 'adding hexadecimal numbers, remember not to carry unless the sum is
greater than F. Thus 25 + 25 = 50 (decimal), but 25 + 25 (hexadecimal) is 4A,
and not 5A (remember that 5 + 5 = A, without carry, in hexadecimal).

Conversion between decimal and hexadecimal forms may also be done with
tables. Table 2 in the Appendix helps you to convert a hexadecimal number of
up to four digits into decimal, or a decimal number of up to five digits into hex-
adecimal. .

Certain hexadecimal numbers, such as B5, DEF7, and the like, can look like
variable names, and care must be taken not to confuse the two. As we shall see,
the LISA system assumes that a hexadecimal quantity such as BS is written as
$BS5 to distinguish it from a'variable called BS. Some systems, such as the
APPLE monitor program, assume that all quantities are given in hexadecimal,
so that the $ is unnecessary {and.incorrect, in fact). Others, such as most BASIC
systems, do not use hexadecimal numbers, and B5, for example, always stands,
in BASIC, for the name of a variable, and not a hexadecimal constant.

Binary and hexadecimal numbers can also be multiplied and divided; we will
take this up in section 38. Also, fractions, such as 1/2, may be expressed in
either binary or hexadecimal form; this subject is examined in section 97.

EXERCISES
1. Perform the following additions in hexadecimal:
@ 137  *b) BIS9 () FADE
+652 +2551 +BEAD

2. Perform the following subtractions in hexadecimal:

*(@ 519 (b) €650 *(¢) FEED
-304 ./ —1881 —FACE

3. Add the following column of hexadecimal numbers; then convert each
number to decimal, add the decimal numbers, and verify that the sum of
one column is the conversion of the sum of the other column:

36B
2
4F
980
D
E7
15A




6. REGISTERS, CELLS, AND BYTES

Think of the 6502—or any computer—as having a large collection of boxes in
which you can store numbers. Each box on the 6502 contains eight bits; that is,
it can contain any binary number from 00000000 through 11111111 (one and
only one number at any given time).

There are two kinds of boxes. One kind is called a register. There are many
registers on the 6502, but we will start by looking at three basic registers, called
A, X, and Y. The other kind of box is called a cell, and all the cells of the 6502,
taken together, are known as its main memory. The maximum number of cells
(without the use of special techniques) is 65536, or 2'%, although there are some
6502 systems which have a smaller number of cells.

In the hexadecimal system, cach register, or cell, can contain any two-digit
hexadecimal number, from 00 to FF. In the decimal system, (FF);¢ is 255, so
that a register or a cell can contain any decimal number from O through 255.
Note that 255 = 256 — 1 = 2® — 1. The number 28, in binary, is
100000000, or 1 followed by eight zeroes. If we subtract 1 from this number, in
binary, we get 11111111.

This illustrates a general principle about binary numbers: If we have n avail-
able bits (here n is 8), then these bits can hold (a binary code for) any number
from O through 2" — 1 (here 28 — 1). This principle will be used frequently in
what follows.

The cells in the main memory have cell numbers, called addresses, and these
addresses start from zero. Thus we have cell number 0, cell number 1, and so
on; or, we can refer to the cell with address.O, the cell with address 1, and so
on.* The largest possible address is 65535, or 216 — 1. since the maximum
number of cells is 65536 (including the cell with address zero). By our general
principle, any address—that is, any number from O through 26 — 1—may be
contained in 16 bits; that is, in two of our 65536 cells, or, if necessary, in two
registers (such as A and X).

Let us consider an example of this. In section 2, Figure 3, we saw that the

*The cell with address 59 is the fifty-ninth cell in the computer (not counting cell 0), in the same way, for
example, that the house with address 59 Elm Street is (theoretically) the fifty-ninth house on Elm Street.

17



18 Registers, Cells, and Bytes

decimal number 1600 corresponds to the binary number 11001000000. Let us
write this as a 16-bit number, with some leading zeroes:

[elelelelel T Te[e] [olo]oeTo o]

Now we can split up this number between the A register and the X register, as
follows:

[elefefefef Tt]e] [offofefefe]e]e]

A - REGISTER X - REGISTER

In decimal, the A register now contains 6, and the X register contains 64.
Between them, they contain the 16-bit decimal number 1600. A formula for
obtaining this decimal number, in this case, is 256 * A + X; in this case, 256 *
6 + 64 = 1536 + 64 = 1600:

" Besides addresses, or cell numbers, certain cells, in any program, also have
names. These are the names of variables, much like variables in BASIC. If you
have a cell called K, you can keep the value of K in that cell. This value may
change; for example, we might have a BASIC program such as

FOR K =1 TO 100
(further staternents)
NEXT K

where K takes every value from 1 through 100. We can keep all these values in
the cell called K; when K is 55, for example, then 55 is the number in this cell.

Many other computers have registers which contain more than eight bits; they
may contain 24 bits, 36 bits, and so on. However, a register size of eight bits is
very common, and it has a special name, which seems to have originated at
IBM: it is called a byte. “‘One byte”” and “‘eight bits”” mean the same thing;
thus an address, from what we have seen above, may be kept in two bytes. On
computers having eells which are eight bits long, such as the 6502, the words
““byte’” and “‘cell” are often taken as synonymous; for example, we speak of
65,536 bytes of memory, or 64K bytes for short. Here K means ‘‘times
1,024,”" and one kilobyte (or Kbyte) is 1,024 bytes, or 210 bytes.* .

Besides main memory, there is auxiliary memory. A diskette, for example,
contains over 100,000 bytes of memory. You cannot use this memory directly,
however; you must copy the information on it into main memory first. This pro-

*There is also one megabyte, or Mbyte, which is 2% or 1,048,596 bytes. Although 6502-based systems
cannot have as much as a megabyte, others can (such as those based on the 8088 or the 68000). On
computers having cells which are more than eight bits long, each cell is often called a word, and we
speak of 16-bit words, 36-bit words, and so on.
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cess, known as reading the diskette, will be considered further in sections 91
and 92.

Always be careful not to confuse an address with the number in the cell with that

address. For example, the cell with address 6 can contain any number from 0
through 255; it does not have to contain the number 6. (To say that it has the address
6 means only that it is the sixth cell, of all the cells in the computer, and nothing
more.) '

EXERCISES

1.

Which of the following numbers can be kept in the A register?

(a) 200
*(b) 300
(c) 400

Suppose that each of the following numbers were to be kept in two regis-
ters, the A register and the X register. What quantity would be kept in the
A register, and what quantity in the X register? (All these numbers are
decimal.)

*(a) 256
(b) 1000
*(c) 10000

*3.  An older computer called the PDP-8 had 12-bit registers. What is the larg-

est decimal number that can be kept in such a register?




7. MULTIBYTE QUANTITIES AND

TWOS’ COMPLEMENT

It might seem that there is a problem with cells of this kind, since we-can only keep
numbers from 0 to 255 in them. We cannot keep large numbers (greater than 255);
we cannot keep negative numbers (less than zero). If we want to keep large
numbers and negative numbers in computers, we must use special techniques,
which we will now learn. T

We can keep large numbets by using more than one cell for each number. If
we use two cells, as we did with addresses, then we can keep numbers from 0
through 216 & 1, or 65535. If one cell contains p, and the other contains g, then
the two cells together contain 256p + g; this is similar to the formula 256A + X
given in the -preéeding section. If we use more than two cells, say n cells, we
can keep any number from O through 23" — 1. For example, if n is 4, then
2% — 1is 2*2 — 1, which is over 4,000,000,000.

We can keep negative numbers in one of two ways. The first is to set aside
the leftmost bit as a code for the sign; O means ‘‘positive’’ and 1 means ‘‘nega-
tive.”” In a cell containing eight bits, 10000011 would represent —3; the first 1
means ‘‘negative,”’ and the rest of the cell, 0000011, represents 3 (with five
leading zeroes). This is called the signed magnitude representation. 1t is not,
ordinarily, used on the 6502; it was used, mainly, in the computers of the early
1960s.

The other way to represent negative numbers is similar to the three-digit
counter found on many audio tape players. When the tape rewinds, this counts
backwards; when it'gets down to 000, it proceeds to 999, then 998, and so on.
In the same way, if we continue to subtract 1 from an 8-bit binary number, and it
reaches 00000000, it proceeds to 11111111, then 11111110, and so on. Thus 11111111
is a representation of —1; 11111110 is a representation of —2; and so on. The
numbers from — 5 to 5 are given in this way, in decimal, binary, and hexadecimal,
in Figure 7. .

We can find the representation of —x by subtracting x from binary
100000000. Thus, for example, 45 (decimal) is 101101 in binary, and, if we
subtract this from 100000000, we get 11010011. It is easier, in fact, to subtract

20
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DECIMAL BINARY HEXADECIMAL

-5 11111011 FB

—4 11111100 FC

-3 11111101 FD

-2 11111110 FE

-1 11111111 - FF
0 00000000 00 |
1 00000001 01 |
2 00000010 ° 02 ‘
3 00000011 03
4 00000100 = .04 ‘
5 00000101 05 ‘

Figure 7. Twos’ Complement Integers.

x from binary 11111111, and then add 1 to the answer (this works because 11111111 +
1 = 100000000 in binary). Thus we can calculate either

(Lelelele[o[o[o[s]  CLLLDLIL]
- [BLLTel] 7 - [efe el iel]

Ll Jof ool ]t L] ol fofoef]o]
. + El

[ lefofrfofo]r]r]

The second calculation is easier because there is never any borrow when you
subtract from all 1’s. Every subtraction is either 1 —0=1or1—1=0.In
fact, you do not even have to subtract; just change every O to a 1 and every 1 to
a 0. This is called complementing the number, or taking the ones’ complement.
(The complement of 0 is 1; the complement of 1 is 0.) When you add 1 as
above, you get the twos” complement.*

*This term is a misnomer, which survives for historical reasons. You do not get the twos’ comple-
ment of x by subtracting x from 22222222, or the like; you simply add one to the ones’ complement
of x.
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The twos” complement representation is the technique of representing a positive
number x as the bit 0 followed by the binary number x, and a negative number —x
as the bit 1 followed by the twos’ complement of x, or 2~ — x, in a register
containihg dbits. If d = 8, the largest number in this representation is 01111111
(decimal 127) and the smallest is 10000000 (decimal — 128); in general, the range
is from —24 'to 2?7} — 1, and numbers in this range are called signed numbers. A
positive signed number x is represented, in binary, as x; a negative signed number

—x is represented as 297 + (247" — x), or 2 — x. The twos’ complement of a
negative number is again its ones’ complement plus one (not minus one); thus the
ones” complement of 11010011 is 00101100, and this plus one is 00101101.

The twos’ complement representation is used on almost all computers today,
mainly because, as we shall prove in section 88, it allows the operations of
signed and unsigned addition to become the same. For example:

N 13 B A 3
+25| ’ +||[‘t'J1]|lllo[|||J + (-5)

254 [.I.g.[.[.r.m e

Note that if 11111011 is unsigned, it cannot be —5, so it must be 251; if it is
signed, it capnot be 251 (remember that the signed numbers range from —128
to 127), so it must be —5. We often use a binary number like 11111011 to
represent two different numbers (251 and —35, here); and as we have seen,
there is never any confusion. We have to remember what kind of data our binary
numbers represent, because there is no way to test a register, or a cell, to see
whether it is supposed to contain a signed integer, an unsigned integer, or some
other kind of dat«.*

Fractions, and other real numbers, may also be represented in the 6502. We
will take up this subject in section 98.

*It is true that in certain very high level languages, such as LISP and SNOBOL, tests like these appear
to be possible; but all such languages use a trick, which we shall discuss in section 100,
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EXERCISES

L.

Express the following decimal numbers in binary, as they would be con-
tained in the A register, using the twos’ complement representation:

(a) —23
*(b) 54
(©—1

Express the following binary numbers; as they would be contained in the A
register in twos’ complement notation, as signed decimal numbers.
(Remember that a signed number is not necessarily negative.)

*(a) 11101000
(b) 01110111
*(c) 10000011

Suppose that the binary numbers of the preceding exercise are considered
as unsigned numbers. Under these conditions, express them as decimal
numbers.



8. LOADING AND STORING

Suppose now that we have the BASIC statement L = K. This sets the new value
of L equal to the value of K. If K was 55, then the new value of L is 55. In the
6502, we must move the number 55 from the cell called K to a cell called L.
(For now we will assume that 0 < K < 255 and 0 < L < 255, for unsigned
quantities K and L; or —128 == K=< 127 and —128 < L =< 127, for signed
quantities K and L. We will remove this restriction in section 12.)

Moving a number from K.to L is done in two steps:

(1) Move the number K into a register. This is called loading the register.
(You load a register with a number just like you might load your car with
a package.) -
. (2) Move the number from the register into L. This is called storing the
register. (You store a number from a register just like you might store a
package which you took out of your car.)

On the 6502, there are six instructions that load and store registers. (An
instruction on the 6502—sometimes called a statement—is like a statement in
BASIC.) These are:

i

LDA

v Load the A register with v

LDX Vv Load the X register with v

LDY v Load the Y register with v
STA v Store the A register in v
, STXV Store the X register in v
S osTY v Store the Y register in v

Here LD stands for ‘‘load’’; ST stands for ‘‘store’’; and v can be any cell in the
main memory.

This gives us three ways to do the BASIC statement L = K on the 6502. If
we want to use the A register, we can write, as part of an assembly language
program, :

IDA K
STA L

24
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If we want to use the X register or the Y register, we could write

LDX K or LDY K
STX L STY L

We can also load a constant.* Suppose that instead of L = K we wanted to do
the BASIC statement L = 100. In that case, -using the A register, we could write

DA #1100
STA L |

Note the ‘‘number sign’’ (#) which we must use for a constant (‘‘the number
100,” in this case). The special character ! here means that 100 is a decimal
number. We could also use % for binary numbers, or $ for hexadecimal
numbers; thus either

LDA #%01100100 Or LDA #3$64
STA L ) STA L

would set L equal to the decimal number 100. We could also use the X register
or the Y register, and write

LDX #!100 or LDY #1100
STX L STY L

In BASIC, we know that, if we set L = K, this does not change K; the new
value of L is the same as that of K. In the same way, on the 6502, when we load

a register with K, this does not change K, and, when we store a register intoL, -
this does not change the register. In particular, consider the instructions

LDA P
STA Q
STA R

We load the A register with P; then we store it into Q; then we store it again into
R. This is the same as writing

Q=P
R =P

in BASIC, since P is still in the A register when we store R.

*Such a constant must fit into a register; that is, we must have 0 <t k < 255 for an unsigned constant
k, or —128 =< k = 127 for a signed constant k.
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As another example, suppose we want to take the number in K and put it in
L, and also take the number in L and put it in K. (If wehad K =3 andL = 8,
this would set K = 8 and L = 3.) This is called interchanging K and L. We can
do it on'the 6502 by writing

ILDA K
DX L
STA L
STX K

There are four instructions here. First we load the A register with K and load the
X register with L. Now the A register (which contains the value of K) is stored
in L; while the X register (which contains the value of L) is stored in K.

Always remember that a register can contain one and only one number at any
given time. For example, if you write LDA K followed immediately by LDA L
then the value of K, in the_A register, would be lost.

EXERCISES

1. Give sequences of instructions on the 6502 corresponding to each of the
following BASIC statements. (Remember that, just as in any program-
ming language, all variable names are written ‘‘on the line’’; we never
write Bs or Bs, for example, but rather B5 or B3.)

*(a) B5 = B3
(b)pp = 57
*cyz = o0

2. Give one or more BASIC statements to correspond to each of the follow-
ing sequences of instructions on the 6502. (Remember that hexadecimal
constants are not allowed in BASIC.)

//
@ DA C1
STA C2
*b) IDX 4150
STX W
STX W2
© ILDY #$5D
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*3. Give a sequence of instructions on the 6502 which performs a *‘triple
interchange’” of P, Q, and R. That is, it sets Q to the old value of P; R to
the old value of Q; and P to the old value of R. (Note that a triple inter-
change is not the same as three ordinary interchanges.) Use the A and Y
registers only, not the X register (that is, do not use LDX or STX).



9. INCREMENTING AND
DECREMENTING

On any computer, we can add and subtract. On the 6502, there are tricks to
adding and subtracting. We will not learn these tricks until sections 15 and 17.
However, there are two special cases which are easy: adding 1 (which is known
as incrementing) and subtractfng 1 (which is known as decrementing).

There are six instructions on the 6502 which increment and decrement:

Here v can be any cell in the main memory, as before. Note that we cannot

INC Vv Increment v

: ’ DEC v Decrement v

©INX Increment the X register
p DEX "~ Decrement the X register
i INY In¢rement the Y register
- DEY Decrement the Y register

|

“ increment, or decrement, the A register.

‘\ We can use these instructions to do BASIC statements such as K = L + 1.
‘i ‘ This would be done in three steps:
\

|

(i) Load a register with L.
1 (2) Increment the register (add 1 to it).
K (3) Store the register in K.

If we wanted t()/use the X register, this could be done by

IDX L
INX
STX K

In the same way, we could set U =V — 1, usiné the Y register, by

DY Vv
DEY
STY U

28
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On the other hand, if we just wanted to set K = K+ 1 (that is, add 1 to K), we
would write only one instruction:

INC K
Note that
INC L
IDA L
STA K

is not a good way to set K = L + 1. It does set K = L + 1, but it also changes
L. (When we set K= L + 1, we want to make sure that K, and only K, is
changed.) The change to L is called a side effect. (If you take aspirin for a
headache, and the aspirin cures the headache but also gives you an upset
stomach, this is also called a side effect.)

Increment and decrement instructions are often used to add 2 or subtract 2.
Thus we can set K = L + 2 by ‘

IDX L

INX

INX

STX K
orK=K—2by

DEC K

DEC K

We could also add or subtract 3, 4, and so on, in this way, but we usually do

this with add or subtract instructions (to be taken up in sections 15 and 17).

Always remember that INC K and DEC K do not change what is in the A
register. In particular, INC K followed by STA L will not set L equal to K + 1.

Incrementing 255 produces zero, and decrementing zero produces 255.
Thus, for example, if the X register contains zero (or 00000000 in binary), and
we do a DEX, it will now confain binary 11111111 (255 as an unsigned
number, or —1 as a signed number), as we saw in section 7. Similarly, if the Y
register contains binary 11111111, and we do an INY, it will now contain zero.

An instruction such as INC K is often referred to as a use of INC. Similarly,
LDA L is a use of LDA, and STX M is a use of STX. For example, the
sequence of instructions

LDA #!0
STA K1
LDA #!1
STA K2
STA K3

contains two uses of LDA and three uses of STA.
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EXERCISES

1. Give sequences of instructions on the 6502 corresponding to each of the
following BASIC statements:

(a)F6 = F4 + 1
*(b) F4 F4 + 1
©w=w-1

2. Give one or more BASIC statements to correspond to each of the following
" sequences of 6502 instructions:

| *(a) IDX K4
! DEX

STX K3
g (b) "DEC C
L DEC C
Iy 1
|
I
i *©) S . IDY S
| o STY J
r ' INY

STY C

; 3. Give two 6502 instructions which are equivalent to the three instructions

! : LDX  #$30
DEX

STX - B




10. MACHINE LANGUAGE AND
ASSEMBLY LANGUAGE

There is another kind of code which is kept in cells of the 6502. This is the code for
instructions. Every instruction has an instruction_code, which we will always
express in hexadecimal, and which may take up one, two, or three cells in main
memory. For example, LDA #$64 has the instruction code

A9 64

(that is, A9, or 10101001 in binary, in the first cell, and 64, or 01100100 in
binary, in the second cell).

The instruction code for STA L would depend on the address of L (that is, the
address of the cell containing L). We may remember that every cell has a cell
number, or address, and that this address is given by 16 bits, or two bytes. It is
therefore also given by four hexadecimal digits. Suppose that the cell containing
L has the address 08C4. Then STA L has the instruction code

8D C4 08

The first byte (or the first two hexadecimal digits) of an instruction code is

called the operation code (or *‘opcode’”). This is a code for the particular opera-
tion; thus A9 is a code for ‘‘load the A register with a constant,” while 8D is a
code for ““store the A register into a variable with a 16-bit address.””

Whenever a constant is involved in an instruction (such as LDA #$64), there
are two bytes in the instruction code, and the second byte is the constant (hexa-
decimal 64, in this case). Such instructions are sometimes called immediate
data instructions.

Whenever a variable with a 16-bit address is involved in an instruction, there
are three bytes in the instruction code, and the second and third bytes give this
address. Note that these two bytes are always reversed. The address 08C4
became C4 08 in the instruction code for STA L. This is done for reasons of
simplifying the hardware design of the 6502.

These codes, then, are kept in cells in main memory; and these cells, of

3
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course, also have addresses. Suppose that the A9 of A9 64 (as above) is kept in
the cell with address 0807. Then the next byte, 64, is kept in the next cell—in
this case, the cell with address 0808.
If LDA #8$64 is followed immediately by STA L—that is, if we are setting
= 100—then the three bytes of STA L are kept in the three following cells,
wh1ch have addresses 0809, 080A (remember that addresses are hexadecimal
numbers), and 080B. This may be tabulated as follows;

ADDRESS CONTENTS INSTRUCTION
0807 A9 LDA #3%64
0808 64
0809 8D STA L
080A C4
080B ) 08

The first two columns here are called the machine language form of the instruc-
tions. The third column is called the assembly language form. The machine lan-
guage form is often compressed, as follows:

MACHINE LANGUAGE ASSEMBLY LANGUAGE
" 0807 A964 LDA #%$64
0809 8DC4 08 . STA L

The three-letter codes for the instructions, like LDA, are called mnemonics.*
Thus ““load the A register with a constant’” has the operation code A9 and the
mnemonic LDA. ‘““Mnemonic” means ‘‘memory aid’’ (yours, not the
computer’s); LDA is easier to remember than A9.

On the 6502, several instructions with different operation codes may have the
same mnemonic. Thus ‘‘load the A register with a variable having a 16-bit
address’” has the operation code AD, rather than A9, but its mnemonic is still
LDA.

Some instructions, like INX, consist of only a mnemonic. These instructions,
in machine language, consist of only an operation code (E8, for INX); that is,
there is only this orie byte in the instruction code.

The word “‘contents’” at the top of the second column, above, is widely used
to stand for what is contained in a cell ¢. Of course, this is the value of the vari-
able ¢, in the usual sense.

We have studied twelve instructions on the 6502 so far: LDA, LDX, LDY,
STA, STX, STY, INC, INX, INY, DEC, DEX, and DEY. There are many
more; and they are all given in three tables in the Appendix. Table 3 explains

*Pronounced ‘‘ne MON iks.” Note carefully that LDA K is not a mnemonic; it is a use of the mnemonic
LDA. The variable K is known here as the operand of LDA.
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each instruction; Table 4 lists all assembly language instructions in alphabetical
order, with corresponding machine language forms; and Table 5 lists all
machine language instructions in numerical order, with corresponding assembly
language forms. In addition, we will study the instructions intensively, singly
and in groups, in the sections which follow.

The idea of keeping instructions, as well as data, in memory in coded form is
the basic idea of the computer, discovered -at approximately the same time by
the inventors of the computer—Aiken, Atanasoff, Eckert and Mauchly, and
Goldstine and von Neumann. It is known as the stored program concept.

EXERCISES

*1.

*3.

Assuming that the cell containing M has the address 08DA, give the
machine language form, starting at the address 080B, of the assembly lan-
guage instructions

DA #10

STA M
(It cannot be said too often that precision and careful attention to detail
are important, in both machine language and assembly language. Here

and in all further exercises in this book, note that the contents of any cell
are always given. in machine language, as two hexadecimal digits.)

Assuming that the cell containing N has the address 08DB, give the
assembly language form of the machine language instructions

0810 A9 FF
0812 8D DB 08

Under the assumptions of both of the preceding exercises, give BASIC
statements corresponding to the machine language instructions

0815 A9 03
0817 8D DA 08
081A 8D DB 08




11.- THE ASSEMBLER AND PSEUDO-
OPERATIONS

The next question is how we can find out what the address of a variable is in a
given program, and how we can assign it a value. The answer is that this is done
by a program, called an assembler.

The assembler translates ‘assembly language into machine language. That is,
you write your program in assembly language, and then the assembler produces
the machine language form of that program. Only when this is done, and the
instruction codes are all in memory, can we run, or execute, the program.

Throughout this book we shall assume that we have some version of the LISA
assembler: Like all assemblers, this has its own conventions, some of which are
unique. For example, the use of the special characters ! % $ to denote decimal,
binary, and hexadecimal numbers is peculiar to LISA.

Whenever we use an assembler, we write the instructions, or operations, of
our program, and we also write certain pseudo-operations. These look like
instructions, but they are not; they tell the assembler various things it needs to
know. The most important of these pseudo-operations, in LISA, are ORG (or
“‘origin’ ’),rEND, and DFS (or Define Storage). An example of the use of these
is given in Figure 8.

The pseudo-operation ORG tells LISA where to start. If you write ORG n then
LISA starts at the address 7 (which is usually given as a hexadecimal number), and
goes on from there. Thus in Figure 8, ORG $0807 tells LISA to start at address
0807, which means that the next instruction (LDA L) is translated into a machine
language form (AD C5 08) in cells 0807 (see the left-hand column), 0808 and
0809. The next cell after 0809 is 080A (not 0810—be careful!) so the next
instruction after that (STA K) is translated into machine language form (8D C4 08)
in cells 080A (again see the left-hand column), 080B, and 080C. As we noted in
the preceding section, AD is the operation code for ““load the A register with a
variable having a 16-bit address,” and this is different from the operation code for
“load the A register with a constant,”” which is A9.

The pseudo-operation END must be given, once and only once, at the end of the
program (as in Figure 8).
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The pseudo-operation DFS is used once with each variable in the program, to
tell LISA how much storage, or main memory, is used by that variable. If v is any
variable, then v DFS n specifies v as taking up n bytes, or cells, in the memory. (In
LISA 2.5, v DFS n, 0 will set all these bytes initially to zero.) Thus, in Figure 8,
we have ORG $08C4 and K DFS !1, which means that K takes up one cell, and
specifically (see the left-hand column) the cell with address 08C4 (since ORG
$08C4 requests LISA to start at cell 08C4, as noted above). Then we have L
DFS !1, which means that L takes up one cell—the next cell, which therefore (see
the left-hand column again) has address 08C3.

MACHINE LANGUAGE - ASSEMBLY LANGUAGE
‘ORG $0807
0807 ADCS5 08 LDA L
080A 8D C4 08 STA K
ORG $08C4
08C4 K DFS !'1
08C5 : ' L DFS !1
- END

Figure 8. Machine Language and Assembly Language.

This program has a program section, consisting of the operations in the pro-
gram (LDA and STA, here), and a data section, consisting of the data (K and L,
here). Each section begins with an ORG statement. From now until section 45,
where we study more general programs, we shall assume that every program
has a program section and a data section, as above. The addresses of the ORGs
must be between 0800 and 17FF (hexadecimal); this is the area which the LISA
system sets aside for your programs. Either the program section or the data sec-
tion may come first.

Make sure that the program and data sections do not overlap. If the program
section extends from cell 0800 to cell 0834 (for example), the data section can start
at cell 0840, but it cannot start at cell 0820 (since only one number can be in any
cell at any given time).

Note the blanks before and after ORG, LDA, STA, and so on. There may be one
blank, or more than one; but these blanks must appear, and they must not appear
where they are not specified. (You cannot write LD A instead of LDA, for
example.)

In assembly language, we can always specify a variable by giving its address.
In the example above, the address of K is 08C4; so instead of STA K we could
write STA $08C4 with the same result. In particular, we can write LDA !5 or
LDA $5 and this will load, into the A register, the contents of the cell whose
address is 5. This is quite different from LDA #!5 (or LDA #8$5), which loads
the A register with the number 5. Leaving out the “‘number sign” # is a
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common beginners’ error; remember that, if you do this, the LISA system will
not mark it as an error, since it has a legitimate meaning.

All the pseudo-operations of LISA are explained in Table 6 in the Appendix.
We -will discuss these in detail in the sections which follow. Table 7 in the
Appendix discusses all the special characters (3 ! $ % and the like) which are
used by LISA. We may note that ! is required for all decimal numbers in LISA
1.5 (and we will use ! for all decimal numbers in this book); but, in LISA 2.5,
the ! is optional and may be omitted.*

EXERCISES
1. Give the machine language form of the following assembly language

program: ' ’
ORG  $0900

M DFS I1

N DFS !1
' ORG  $0910
LDA #!10

STA M

,STA N

END

*2. Give the assembly language form, using ORG, END, and DFS, and a
variable called C, of the following machine language program:

. 08D0 A9 50
' 08D2 8D FA 08
3. Give the assembly language form, using ORG, END, and DFS, and vari-
ables called P1, P2, and P3, of the following machine language program:

08DD A9 00
ya 08DF 8D 09 09
08E2 8D OA 09
08E5 8D OB 09

(Note that the cell or cells used by a variable are used only by that vari-
able, and by no other variable.)

*There is an exception to this: if you really want to operate on cells with decimal addresses (that s,
LDA 10 to load the cell with address 000A, or decimal 10) the ! is required. This should never make a
difference in your programs, however, since addresses should always be given in hexadecimal.




12. TWO-BYTE NUMBERS AND
ADDRESS EXPRESSIONS

The DFS pseudo-operation can be used to spec1fy a two-byte, or 16-bit, number
called J; we write J DES !2 for this.

The two bytes of such a number are often called the left half and the right
half, or the upper half and the lower half. Thus if the value of J is 08C4, then 08
is the left half, or the upper half; C4 is the right half, or the lower half.

An ordinary 8-bit (positive) number may be expressed as a 16-bit number by
putting zero in front of it. Thus 03 and 0003 are the same number; so 3, as a
16-bit number, consists of zero in the left half and 3 in the right half.

A negative number, expressed in 8 bits, in twos’ complement form, can be
expressed in 16 bits, also in twos’ complement form, by putting all ones (binary
11111111, or hexadecimal FF, or decimal —1) in front of it. We recall from
section 7 that the negative number —x is given as 2¢ — x, in a d-bit register or
cell. If d = 16, this becomes 216 — x, or hexadecimal 10000 — x. Thus, for
example, —8, which is hexadecimal F8 (or 100 — 8) in 8 bits, becomes hexa-
decimal FFF8 (or 10000 — 8) in 16 bits. The lower half is F8, and the upper
half is FF.

If we were to write, in assembly language (for example)

ORG $0950
J DFS 12

then the two halves of J would be kept in the cells with addresses 0950 and
0951, in hexadecimal. The address of J would be 0950. In general, the address
of a quantity which takes up more than one byte is the address of its first byte *

It is quite common to keep all two-byte quantities, on the 6502, with the
bytes reversed, just as we did for addresses (see section 9). In the case above,
the left half would be in the cell whose address is 0951; we can abbreviate this

*There is a bug in LISA 1.5 (corrected in LISA 2.5) which sometimes makes it appear (in the listing
only, not in the resulting machine language program) that this is not the case.
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and say that the left half is at the address 0951. (From now on all addresses will
be given in hexadecimal.) In the same way, the right half is at the address 0950.

Suppose niow that we have a two-byte number J and another two-byte number
N, and we wish to set N = J. On the 6502, this must be done one byte at a time.
That is, we must:

(1) Load the lower half of J and store it in the lower half of N.
(2) Load the upper half of J and store it in the upper half of N. (We can do
(2) first and then (1), if we like.)

This may be done, using the X register, as follows:

X J
STX N
DX J+!1
STX  N+I!1

The expression J+!1 is an address expression. If J is a variable with address
0950, then J+!1 is a variable with address 0951.

An address -expression may contain constants and variables. Any variable
which it contains is taken to stand for the address of that variable. In this case, J
stands for 0950, and adding 1 to this produces 0951.

The address given by an address expression appears in the machine language
form of the program. For example, we have the following program in both
machine language and assembly language form:

! MACHINE LANGUAGE  ASSEMBLY LANGUAGE
ORG  $0900
0900 AE 50 09 IDX J
0903 8E 52 09 STX N
0906 AE 51 09 LDX J+!1
0909 8E 53 09 STX N+!1
s ORG  $0950
© 0950 J DFS !2
0952 N DFS !2
END

Here AE is the operation code for ‘‘load the X register with a variable having a
16-bit address.”” The address of J is 0950, and this appears as 50 09 (with
reversed bytes, as before). The address of J+!1 is 0951, and so this appears as

51 09.

Address expressions can be confusing. It might look as if LDX J+!1 is put-
ting the value of J, plus one, in the X register. We have seen that this is not the

case, more importantly, this cannot be done in only one instruction. If we
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wanted to load X with the value of J, plus one, we would have to use two
instructions:

INX

EXERCISES

*1.

*3.

Give the machine language form of the following assembly language

program:

ORG
N1 DFS
N2 DFS
ORG

_STA

STA .

STA
END

$0980
12

11
$09CO
#!0

-N2

N1
Ni+!1

Give the assembly language form, using ORG, END, DFS, and a two-
byte variable called AD, of the followirg machine language program:

0888 A9 01 .
088A 8D F1 08
088D A9 00
088F 8D FO 08

Give machine language statements, starting at address 0840, and making
reference to a two-byte variable J at addresses 0858 and 0859 (with bytes
reversed as usual), corresponding to the BASIC statement J = 100. Store

the upper half of J first. Use the A register.



13. SUBSCRIPTED VARIABLES AND
INDEX REGISTERS

The DFS pseudo-operation can also be used to specify an array (declared with
the DIM statement in BASIC).

Suppose that T is an array of one-byte integers, ranging from T(0) through
T(10). There are eleven of these 1ntegers (T(1) through T(10), and also T(0))
and each one is a variable which requires one cell in main memory. We can
specify all these variables by writing

!

T DFS 111

The addresses of these ¢leven variables are given in Figure 9, if we assume
that the address of T(0) is 0858. The address of T, in this situation, is the
address of T(0); that is, it is 0858. (This illustrates our general rule that the
address of a quantity taking up more than one byte is always the address of its
first byte.)

Looking at Figure 9, we can see that there is a general formula for the address
of T(k), for any value of k from 0 to 10: it is 0858 + k. In general, the address
of T(k) is k plus the address of T(0).

This formula may be used to specify an array element with a constant sub-
script. In section 8, if we wanted to do the BASIC statement L = T(6) instead
of L =K, we cou}d write

ILDA T+!'6
STA L

We have used another address expression here. If T has address 0858, then
T+!6 means the variable with address 0858+6,-or 085E. We can see from Fig-
ure 9 that this is indeed T(6). (Again we must note that this does not load the A
register with the value of T, plus 6. To do this we would have to do LDA T and
then add 6, using an add instruction. These are considered in section 15.)
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VARIABLE

T(0)
T(1)
T(2)
T(3)
T(4)
T(5)
T(6)
T(7)
T(8)
T(9)
T(10)

0858
0859
085A
085B
085C
085D
085E
085F
0860
0861
0862

ADDRESS
(=0858 + 0)
(=0858 + 1)
(=0858 + 2)
(=0858 + 3)
(=0858 + 4)
(=0858 + 5)
(=0858 + 6)
(=0858 + 7)
(=0858 + 8)
(=0858 + 9)
(=0858 +.

Figure 9. Addresses of Elements of an Array.

Our formula may also be used when the subscript is variable. Suppose that
the BASIC statement is L = T(J) rather than L. = T(6). We may now proceed as

follows:

(1) Load the index—that is, the subscript, in this case J—into an index
register. On the 6502, the index registers are the X and Y registers.

(2) Load T(J) into the A register with an indexed instruction. On the 6502,
an indexed instruction contains v, X or v, Y (where v is an array name),

rather than just v (where v is a variable name).

(3) Store L., just as before.

Using the Y register, this would be

The instruction LDA T,Y loads the A register with the quantity whose address
is 0858 + k, where £ is in the Y register. We have seen that this is the address
of T(J) in this case. In general, LDA T,Y adds the address of T to the
(unsigned) contents of Y and gets an address called the effective address; and
then the number in the cell with rhat address is loaded into the A register. Using
the X register, which is the other index register (hence the name ‘X register’),

we could set T(J) = L by writing

LDX
LDA
STA

J
L
T,

X

*This is, of course, the hexadecimal address 0858 plus the decimal number 10.
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The instructions LDX v, Y and LDY v, X (but not LDX v, X or LDY v, Y) may
also be used, where v is any array name. However, STX and STY may not be
used with the forms v, X or v, Y (except in a special case which we will take up
in section 74).

The instructions which we have studied so far may be divided into five
classes, with examples as follows:

LDA Q,X Indexing by register X
LDA Q,Y Indexing by register Y
LDA Q No indexing

LDA #n Constant

INX No address or constant

These five are examples of addressing modes. There are many further address-
ing modes on the 6502, which are explained in Table 8 in the Appendix. Not
every addressing mode can be used with every instruction; Table 4 in the
Appendix shows which addressing modes can be used with which instructions.

The mnemonic code and the addressing mode, taken together, determine the
machine language operation code. Thus, for example, if T is at address 0890,
then we have, the following correspondences between assembly language and
machine language: :

STA T 8D 90 08
STA T,X 9D 90 08
STA T,Y 99 90 08

Note that the address, in the machine language form, does not change—only
the operation code. (Also see Table 4 in the Appendix.)

The fact that the X and Y registers can contain only numbers from O to 255
(because each of them is eight bits long) means that most arrays on the 6502
cannot have more than 256 bytes apiece. Any array longer than that is a long
array; processing of long arrays will be deferred to section 77.

EXERCISES

1. Give an assembly language form of each of the following BASIC state-
ments (omit ORG, END, and DFS). Remember to treat constant subscripts
and variable subscripts in different ways, as indicated in this section. (A
constant subscript can, theoretically, be treated as a special case of a vari-
able subscript; but you will use an extra instruction this way each time, and
it is not recommended.)

@1 =r1TK
*b)Te) =g
Tm) = TN
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2. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements:

*(a) DX J
IDA T,X
STA U,X
(b) IDA T+!1
: STA N |
*©) DX M

3. Give a machine language program corresponding to the BASIC statement
T(5) = 16, assuming that T is as in Figure 9 and the program starts at address
08AS8. Use the A register; use as few instructions as possible.



14. THE NUMBER SYSTEM WITH
BASE 256

We have learned to work with the binary number system (base 2) and the hexa-
decimal system (base 16), as well as the decimal system (base 10). The octal
system (base 8) is also in use, but it is not needed for our purposes. There is one
other number system of concern to us, having the base 256.

Of course, we do not propose to write 256 different characters for the digits
of this system; no computer keyboard has that many characters. Instead, we
consider two hexadecimal digits, taken together, as if they were a single digit in
the system with base 256.

Adding and subtracting numbers of more than one digit is the same in this
syster as in the decimal system, with 256 in place of 10. We have seen that this
is a property of all number systems ‘with bases. Let us first consider addition. In
section 5 we added two four-digit numbers in hexadecimal:

B785
+2C84
. E409
;
Let us add these same two numbers, as two-digit numbers in the system with
base 256:

(B7) (85)
+(20) (84)
S (E4) (09)

The digit (85)v plus the digit (84) is the two-digit number (01) (09); so we bring
down the (09) and carry the 1. The digit (B7) plus the digit (2C), plus one, is

' now the digit (E4).
In section 5, we also subtracted two four-digit hexadecimal numbers:
834E
—2E5A
54F4

4
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Subtracting these as two-digit numbers in the system with base 256, we obtain:

(83) (4E)

— (2E) (54)
(54) (F4)

In the first subtraction, we have to borrow 1. The two-digit number (01) (4E),
minus the digit (5A), is the digit (F4). In the second subtraction, the digit (83)
minus the digit (2E), minus one, is the digit (54).

The system with base 256 is important because each digit corresponds to a
byte. Suppose that we have two 16-bit numbers, or two-byte numbers, to add,
as follows: ‘

ab
+ed
ef

where a, b, ¢, d, e, and f are digits in the system with base 256. Then we
proceed as follows:

(1) Add b and d to get f, and note the carry.
(2) Add a and ¢ and the carry, if any, to get e.

Subtraction is done similarly. If we are subtracting

ab
~cd
ef
then the procedure is:

(1) Subtract d from b to get f, and note whether we have to borrow 1.
(2) Subtract ¢ from a, and then subtract one more if we borrowed 1, to get e.

EXERCISES

1. Perform the following two-digit operations in the number system with
base 256:

*(a) (5A)(C3) (b) (A2)(39)
+(3A) (2F) —(45) (1E)

(Remember that, for example, (5A) (C3) and 5AC3 are quite different;
one is a two-digit number, and one is a four-digit number.)
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*). Suppose that we have two 24-bit (or three-byte) numbers to add, as
follows:

abc
+def
ghi

What is the procedure to add these numbers?

] 3. Suppose that we have two 32-bit (or four-byte) numbers to subtract, as
ol follows:

abcd

—efgh
ijkl

What is the procedure to subtract these numbers?




15. ADDITION ON THE 6502

We will now leam how to add both 8-bit and 16-bit numbers on the 6502. On
this computer, 8-bit addition must be treated as a special case of 16-bit addition.

We saw that the X and Y registers are called index registers (hence the name
“X register’”). The A register is called an accumulator (hence the name ‘A
register’”). It is where a sum accumulates, or builds up. On the 6502, adding
can be done only in the A register (except for the special case of adding 1,
which we treated in section 9).

Most computers have an “‘add Q. instruction which adds Q to the accumula-
tor. If we want to set L = J+K, for example, the procedure is:

(1) LoadJ (put J in the accumulator).
(2) Add K (so that J+K is now in the accumulator).
(3) Store L (so that the new value of L is J +K).

Now suppose that J, K, and L are 16-bit numbers, stored in fwo bytes éach,
with the bytes reversed as before. Following the procedure of the last section,
we would add them as follows:

(1) Load ] (the lower half).

(2) AddK (the lower half, and note the carry).

(3) Store L (the lower half).

(4) Load J +!1 (the upper half).

(5) Add K+!1 and add one more if there was carry before (this is known as
add with carry, for short). '

(6) Store L+!1 (the upper half).

On the 6502, the carry is kept in a one-bit register called the carry status flag.
Like the A, X, and Y registers, the carry status flag can be loaded with a
constant—either zero or one. Loading a zero is called clearing, and there is an
instruction, CLC (Clear Carry), which loads zero into the carry flag. (In the
same way, LDA #!0 is often referred to as clearing the A register; if this is fol-
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lowed by STA Q then Q is said to be cleared.*) Loading 1 (into a one-bit regis-
ter) is called setting the register, and there is an instruction, SEC (Set Carry),
which loads 1 into the carry flag.

The ‘“add with carry’’ instruction on the 6502 is ADC. It adds to the A regis-
ter; it also adds the number in the carry flag (either zero or one). If the result is
less than 256, it clears the carry flag; otherwise, it sets the carry flag. In partic-
ular, the instruction ADC K+!1 performs step (5) above; it adds the upper half
of K, and also adds the carry if the carry flag is 1.

The ADC instruction is the only add instruction on the 6502 (except, as we

"have noted, for the special case of adding 1). In order to add without carry (such

as in step (2) above), we first clear the carry, using CLC. Then we “‘add with
carry’’; but the carry flag is zero, so the ADC adds zero, which does nothing.
The entire 16-bit addition program is therefore:

"IDA J
CLC
ADC K
STA L
DA J+!1
ADC  K+!1

STA L+!1

The ordinary (8-bit) addition, L = J+K, is then just the first four instructions
above:

DA J

, CLC

! ADC K
STA L

Suppose now that we want to add three unsigned 8-bit numbers, say I, J, and
K. We load I, clear the carry, and add J. Now the carry should be clear, so we
don’t have to clear it again before we add K. (If the carry is not clear, then
I+J = 256, so’that the answer will be wrong anyway.) Thus the program to set
L =I+J+Kis

LDA I
CLC

ADC J
ADC K
STA L

*In the study of hardware, clearing is often referred to as resetting.
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Just as we can load a constant, we can add a constant. If we want to set L =

J+20, we can do this by

LDA J

CLC

ADC #120
STA L

An instruction like ADC is often spoken of as producing a nine-bir result, in

the eight bits of the A register preceded by the carry flag. Thus CO+CO = 180
(hexadecimal), and adding CO and CO, with ADC, will produce 1 in the carry
flag and 80 (hexadecimal) in the A register. In general, if the result of adding is
k, and if & = 256, then ADC will leave k—256 in the A register (and the carry
flag set to 1). -

EXERCISES

1.

Give an assembly language form. of each of the following BASIC state-
ments (omit ORG, END, and DFS):

*(a) J = K5+K6
(b)s = T@) +T(2)+T(3)
*C)TJ) = UW) +5

(Note: In this and all similar exercises,- assume that all variables in the
given BASIC statements are 8-bit quantities, unless otherwise specified.)

Give a BASIC statement which corresponds to each of the following

sequences of assembly language statements:

(a) LDA
LDX
cLC
ADC T,

STA T

“ )
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Write an assembly language program (omitting ORG, END, and DFS) to
add two 24-bit quantities V1 and V2, to produce the 24-bit quantity V3.
Assume that the three bytes of V1 are kept in memory with the rightmost
first, and similarly for V2 and V3.




16. THE RELATION BETWEEN
CARRYING AND BORROWING

The carry status flag is also used as a.borrow status flag, for subtraction. In
order to understand how borrowing works on the 6502, we have to know the
relation between carry and borrow.

When do we want to borrow, when subtracting the digit b from the digit a?
We want to borrow when b is larger than a (or a < b), so that, if we subtracted
b from a, the answer would be negative.

Now suppose that, instead of treating @ — b as a subtraction, we treat it as an
addition of the negative of b, that is, @ + (—b). Like any addition, this addition
may produce carry. When does it do so?

Remember that the negative number —b is 256 — b in twos’ complement
form. When we add, a + (—b), we are really adding a + 256 — b. This pro-
duces carry when the answer is too large to fit into a byte. That is, the answer is
greater than 255; or, to put it another way, it is greater than or equal to 256. So
the condition under which we have carry is

a + 256 — b = 256
Cancelling 256 from both sides, we get

a—b =0

or, in other words,

a=hb

We now note a peculiar fact: this is exactly the condition in which there is no
borrow, when we subtract b from a. This is the basic relation between carry
and borrow: borrow is the complement of carry. If the addition a + (—b) pro-
duces catry, the subtraction, a — b, does not produce borrow; and vice versa.
The main reason that we need to know this is in order to understand the
instruction SBC (Subtract With Carry). Like ADC, SBC operates on the A
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register; and, on the 6502, subtraction, like addition, can only be done in the A
register (except for the special case of subtracting 1).

Just as ADC Q adds Q to the A register, SBC Q subtracts Q from the A regis-
ter. It does this by adding —Q to the A register; this is done to simplify the
hardware of the 6502. The carry from this addition is placed in the carry status
flag.

The instruction ADC Q adds an extra 1 if the carry flag was set (equal to 1).
The instruction SBC Q subtracts an extra 1 if the carry flag was clear (equal to
0), because this is when borrow does take place.

-We could also say that ADC Q adds the number (0 or 1) in the carry status
flag. In the same way, SBC Q subtracts the complement of the number in the
carry status flag.

Note, by the way, that the increment and decrement instructions (INC, DEC,
INX, DEX, INY, DEY) do not affect the carry status flag. Thus, even if the X
register contains 255, adding 1 to this, with INX, does not set the carry,
although adding 1 to the A register, with CLC and ADC #!1, would set the
carry if the A register contained 255.

L1kew1se loading and storing do not dffect the carry status ﬂag Thus, for
example, in any of ‘the instruction sequences of the preceding section, we could
interchange the first two instructions, putting CLC before LDA, because the
LDA does not change the carry flag (and thus leaves it clear).

Let us now consider some examples of addition and subtraction, with attend-
ant carry flag settings:

(1) A =3, carry =0, ADC #!5. The result in the A register is 8 (=3 + 5);
the carry flag remains zero (the result is less than 256).

(2) A =S5, carry = 1, ADC #!10. The result is 16 (= 5 + 10, plus 1 for the
carry). The carry flag is set to zero.

(3) A =200, carry =0, ADC #!200. The result is 144 (that is, 200 +
200 — 256). The carry flag is set to one, because 200 + 200 is greater
than 255.

(4) A =255, ¢arry = 1, ADC #!0. The result is zero (255 + 0, plus 1 for
the carry, minus 256). The carry flag remains one because the original
result (255 + 0 + 1) is larger than 255.

(5) A =9, carry = 1, SBC #!3. The result in the A register is 6 (= 9 — 3);
the carry flag remains 1 (there is no borrow status—the result is not less
than zero).

(6) A =10, carry = 1, SBC #120. The result is 246 (= 10 — 20 + 256); the
carry flag is set to zero (borrow status; 10 — 20 is less than zero).

(7) A =15, carry = 0, SBC #!5. The result is 9 (15 — 5, minus one more
for the borrow status, since the carry is zero). The carry flag is set to 1.

(8) A =30, carry =0, SBC #!30. The result is 255 (30 — 30, minus one

more for the borrow, plus 256); the carry remains zero.
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We may note that SBC, when it borrows, always borrows 256; that is, it sub-
tracts (256 + p) — g if the given subtraction of p — g would produce a nega-
tive result. Likewise, if the result of addition is greater than 255, then ADC ““brings
down” a quantity equal to that result minus 256.

EXERCISES

1. In each of the following three cases, does the given subtraction produce
borrow? Why or why not? :

*(a) 4 — 3
#(b) 4 — 4
()4 — 5

2. In each of the three cases above, express the subtraction as an addition of
the negative of the second quantity, expressed in a single byte in twos’
complement form. Does this addition produce carry? Why or why not?

3. *(a) Suppose that the A register contains 5, and the carry flag is clear.
What result is left in the A register after the instruction SBC 313 is
performed? Will the carry flag be cleared or set?

(b) Answer both questions in part (a) above if the carry flag was set, rather
than clear, before SBC #!3 was performed.



17. SUBTRACTION ON THE 6502

As with addition, we will consider subtraction for both 8-bit and 16-bit

.numbers. Suppose we want to set L = J—K, where these are all 8-bit quanti-

ties. The procedure is:

(1) Load J (put J in the accumulator).
(2) Subtract K (so that J—-K is now in the accumulator).
(3) Store L (so that the new value of L is J—K).

If J, K, and L are 16-bit numbers, stored in two bytes each with the bytes
reversed, then we would do the same subtraction as follows, using the pro-
cedure of section 14:

(1) Load I (thé lower half).

(2) Subtract K (the lower half, and compute the carry, as indicated in the
preceding section, to show the borrow status).

(3) Store L (the lower half).

(4) Load J+!1 (the upper half).

(5) Subtract K+!1 and subtract one more if there was borrow before (in
other words, subtract K+!1 with carry).

(6) Store L+!1 (the upper half).

The instruction SBC K+!1 performs step (5) above. It subtracts the upper
half of K from the A register, and subtracts one more if the carry was clear
(indicating a borrow status). If the answer is negative, SBC clears the carry;
otherwise, SBC sets the carry.

The SBCi 1nstyuct10n is the only subtract instruction on the 6502 (except for the
special case of subtracting 1). In order to subtract without borrow (such as in step
(2) above), we must first sef the carry, using SEC. (Always remember to clear the
carry before addition without carry, and set the carry before subtraction without
carry.) The entire 16-bit subtraction program is therefore:

LDA J
SEC
SBC K

STA L
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DA J+!1
SBC  K+!1
STA L+!1

The ordinary 8-bit subtraction, L = J—K, is then just the first four instructions
above:

IDA J
SEC

SBC K
STA L-

We may also subtract constants; if we want to set L = J—20, we can do this by

LbA J
SEC
SBC #120

STA L

To set L = —J, we would set L = 0—J, which is the same thing:

LDA #10
SEC

SBC J
STA L

Note that SEC, like CLC, can be placed first in any sequence like these, since
LDA does not change the carry flag (and therefore leaves it set, in this case).

Just as we can calculate I+J+K without clearing the carry after adding J, so
we can calculate I-=J—K without setting the carry after subtracting 1. If I—1J is
non-negative, the carry will be set anyway. In fact, if I-J is positive, we
can calculate I-J+K in a strange way: by loading I, clearing the carry (!), sub-
tracting J, and then adding K without clearing the carry. This actually subtracts
J+1 and then adds K+1, so that the answer comes out right. In the same way,
if I+J is less than 255, we can calculate I1+J—K by loading I, setting the
carry, adding J, and subtracting K without setting the carry (actually,
I+(J+1) — (K+1) 1s calculated).

EXERCISES

1. Give an assembly language form of each of the following BASIC state-
ments (omit ORG, END, and DFS):
(@T="P3 - P4
*(b) s9 = P+9-R(L)
(c) U = —v(8)
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2. Give a BASIC statement which corresponds to each of the following

sequences of assembly language statements:
*(a) DX J
LDA T,X
SEC
SBC T+!3
STA H
|
. (b) LDA N
| . SEC
SBC  M+!5
STA L
DEC L
*©) . LDA  #$A0
| : * DX I
L CLC
! ADC T,X
SEC
SBC U,X
STA U,X

subtract two 32-bit quantities XA and XB, to produce the 32-bit quantity
XC. Assume that the four bytes of XA are kept in memory with the right-

|
I ,
3. Write an assembly language program (omitting ORG, END, and DFS) to
i f
| : most first, and similarly for XB and XC.

‘




18. TRANSFER INSTRUCTIONS AND
COMMENTS

We have learned that numbers cannot be moved directly from one cell to another on
the 6502. We can move a number from a cell to a register (loading), or from a
register to a cell (storing). We can also move a number from one register to another.
On the 6502, this is done by means of a transfer instruction.

The most important transfer instructions on the 6502 are:

TAX Transfer from Ato X
TAY Transfer from Ato Y
TXA ‘Transfer from X to A
TYA Transfer from Y to A

Note that we cannot transfer directly from X to Y, or from Y to X.
Transfer instructions are often used when we are loading two registers with
the same constant. Instead of writing

LDA  #!1
IDY . #!'1
(for example), we can write
IDA  #!'1 :
TAY

We saw in section 10 that an instruction consisting of only a mnemonic, such as
TAY, has a one-byte instruction code, whereas LDA #!1 and LDY #!1 have
two-byte instruction codes. Hence we are saving space by using only three bytes
instead of four. ‘ ,

Sometimes we must move data from one register to another because of differ-
ences in what the registers do. To set L = T(J+K), for example, we write

IDA J
CLC
ADC K
TAX

LDA
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Note that we must calculate J-+K in the A register (clearing the carry, as noted
in section 15), and then the result must go into an index register (X in this case)
in order to be used in the indexed instruction (LDA T, X).

We may note that TXA cannot be replaced by

ILpA X

To see why, consider the machine language form. When we write LDA Q we
put the address of Q in the second and third bytes of its machine language form;
but there is no address of X, because only cells have addresses, and X is not a
cell, but rather a register. (The instruction LDA X is accepted by the APPLE
assembler, but this refers to a variable called X, not to the X register.)

When we transfer data from one register to another, this does not change
what is in the first register; the same number will be in both registers after the
transfer. Transfer instructions are like load and store instructions in this respect.

Any assembly language instruction may be accompanied by a comment,
which starts with a blank followed by a semicolon. Thus the program above
could have been written as '

VIpA g

. PUT J IN THE A REGISTER
-CLC :  ADD K, PRODUCING J+K IN
ADC K ; THE A REGISTER (CLC FIRST)
TAX : PUT J+K IN THE X REGISTER
IDA T,X ; SO WE CAN GET T(J+K) AND
STA L . _STORE IT IN L

(The blank after the semicolon is not required.) An entire line may also start
with a semi¢olon, in which case it 1s a comment.

Comments in assembly language are like comments in BASIC; they are there
for you to tell yourself (or to tell the person who will maintain the program)
what you were doing. Assembly language is harder to understand than BASIC,
however, and for this reason it is recommended that every statement be accom-
panied by a comr/r/zent, as above.

EXERCISES

1. Give an assembly language form of each of the following BASIC state-
ments (omit ORG, END, and DFS):

*(@) PL(I+J) =5
Db)xk=T4(1-M)
*(C) I=NN )
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2. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements:

(a) LDA J
TAX
STA T,X

*(b) DY V '
: INY

TYA
cLC
ADC U
STA W

© LDA T+!3
cLC
ADC  T+!4
TAX
DA -T,X
STA R

3. Two programs are equivalent if they do the same calculation. For example,
the following two programs are equivalent:

IDA M ILDA M
SBC #!8 ADC #3$F'8
STA N STA N

since they both set N = M—8 (—8 being hexadecimal F8). In each case
below, construct a program which is equivalent, in this sense, to the given
program, but shorter (fewer instruction code bytes; this is often called
improving the program):

*(a) LDA

(b)

SEC e
\



19.° BRANCHING AND LABELS

A branch instruction on the 6502 is an instruction which goes to, or branches

o, some place in the program if some condition is true. It is like IF » THEN »

in BASIC, for some condition » and some line nurnber n. This statement goes to
line number n if b is true; otherwise, it goes to the next line number in
sequence.

There are two branch instructions on the 6502 which have to do with the
carry status flag. They are:

BCC L Branch to L if carry is clear
BCS L Branch to L if carry is set

Here BCC means ‘‘branch on carry clear’” and BCS means ‘‘branch on carry
set.”’ ’

In assembly language, unlike BASIC, there are no line numbers. There are
statement labels, which act something like line numbers, but with two important
differences. First, not every statement has a label. In BASIC, every statement, or
group of statements, has a line number, but in assembly language the only
statements ’which have labels are normally those that need labels—that is, those
with branches (or the like) that go to them.

The other difference is that labels are not numbers. They can be letters, such

as L; but they can also be more general than that. The rules, in LISA, for labels are:

(1) A label must start with an (upper case) letter.

(2) A label can contain just one letter, or any number of characters up to (and
no more than) six (LISA 1.5) or eight (LISA 2.5).%*

(3) The other characters in a label may include letters, digits, and certain
special characters (as discussed further below).

*In LISA 1.5, longer labels are not marked as errors, but only their first six characters are used. This
feature of LISA is not recommended because it can lead to confusion; thus MULTIPLICAND and
MULTIPLIER are considered to be the same label (MULTIP).

60
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Thus you have a wide range of labels to use. Here are some:

I HEAT DOG HAND LOVE C6502
J LENGTH CAT FOOT HATE C6502A
w START HIPPO . NOSE ENVY A2B3C4
Z NEXT RHINO EAR PRIDE DARN
B2 LAST BOSTON CARTER GOGOGO HECK
H4 DONE MIAMI REAGAN STOPPP GOSH

LISA 1.5 allows quite a few special characters in labels, but this author does not
recommend their use. Such labels as u=v.or 1#J or even X' $#. * can be used with |
LISA 1.5, but long programs are usually confusing enough enough already |
without such complications. (LISA 2.5 allows the special characters . and _ only.)

The same rules apply to variable names and array names in assembly lan-
guage programs. A variable name or an array name is just a label. Remember
not to use labels with too many characters (like BALTIMORE) or labels that
start with digits (like 4SCORE).

Every label starts at the beginning of the line, or, as we say, in column 1. If an
instruction does not have a label, it starts with at least one space (column 1 must be
blank).

The instructions BCC and BCS can be used to check for error conditions. If
we wish to go to ERROR if I+] = 256, we can do

LDA I ; LOAD I

CLC ;

ADC J ;  CALCULATE I+J, BUT IF THIS
BCS ERROR ;IS > 255, INDICATE ERROR

This kind of checking for carry is useful when you are adding an unsigned 8- "
bit quantity R to a 16-bit quantity Q. Of course, we could consider R as a two-
byte quantity with its upper half zero; then, when we added the upper halves,
we would load the upper half of Q, add zero (with carry), and store in the upper
half of Q again. However, this is the same as adding 1 to Q if the carry is set, and
that takes two instructions instead of three. If our 16-bit quantity is kept in Q and
Q-+, with bytes reversed as usual, the complete sequence will thus be

|
|
CLEAR THE CARRY '

ADD THE LOWER HALF OF Q
(CLEARING THE CARRY FIRST)

LDA Q ;
ADC R ; TO THE 8-BIT NUMBER R ’ |

STA Q AND STORE IT BACK
BCC z4 IF CARRY WAS SET, THEN ADD
INC Q+!1 1 TO THE UPPER HALF OF Q

Z4 (next instruction) |
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In the same way, if we were subtracting R from Q, we could load the upper half
of Q, subtract zero (with SBC), and store in Q; but this is the same as subtract-
ing 1 from Q if the carry is clear (indicating a borrow status), and again we save
one instriiction. The complete sequence here is

LDA Q ;  SUBTRACT THE 8-BIT NUMBER
SEC ; R (SETTING THE CARRY FIRST)
SBC R ; FROM THE LOWER HALF OF Q
STA Q ; AND STORE IT BACK

BCS A4 ;  IF CARRY WAS CLEAR, SUBTRACT
DEC Qt+'!'1 1 FROM THE UPPER HALF OF Q

77  (next instruction)

EXERCISES

1. Which of the following labels can be used in LISA? For each label that
cannot, or should not, be so uised, explain why not.

@v
*(b) CHECKBANGES
(c) 8502C -
*(d) cMPUTR
(e) JPLUSK

2. Give an assembly language form of each of the following BASIC state-
ments, branching to ERROR if any stage of the computation produces an
answer gyeater than 255:

*(@M = T1+T2+1T3
(byc = D(I+])
*(©) T(K+L) = R+4

3. What BASIC statement corresponds to the following sequence of assembly

language instructions? (Assume that the label TWENTY corresponds to
line number 20 in BASIC.)




20. COMPARING, ZERO STATUS,
AND JUMPS

There are many more branch instructions than BCC and BCS. Two of them,
BEQ (‘‘branch on equal’’) and BNE (‘‘branch on not equal’’), are often used
when we want to compare two numbers, as we might do in BASIC by

IF P = Q THEN 200
IF P <> Q THEN 200

(remember that <> in BASIC means #). In order to do this, we use a compare
instruction, of which there are three on the 6502:

cMP vV Comparé the A register with v
CPX V Compare the X register with v
CPY Vv Compare the Y register with v

Thus either of the BASIC statements above would be done as follows:

(1) Load P into a register.
(2) Compare that register with Q.
(3) Branch on equal (or branch on not equal).

If the label L2200 corresponds to line number 200, this would be

LDA P LDX P 1DY P
CMP Q or CPX Q or CPY Q
BEQ L200 BEQ L200 - BEQ L200

for the first statement above. v

Each compare instruction does a subtraction, in this case P minus Q.* How-
ever, the result of the subtraction does not go back into the register, as is the
case with SBC. It is used for comparison purposes only. If P = Q, then
P — Q = 0; and this is what a compare instruction tests (among other things).

*The subtraction is always done without borrow, whether the carry is clear or set. Thus we never need
to do an SEC before a compare instruction, as we normally do before SBC.
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If the result of the subtraction is zero, then the compare instruction sets a
flag, called the zero status flag. This is another one-bit flag, like the carry status
flag. If the result of the subtraction is not zero, then the compare instruction
clears the zero status flag. »

The instructions BEQ and BNE then test the zero status flag that has just been
set or cleared. Specifically, we have:

BEQ L Branch to L on equal (zero status flag set)
BNE L Branch to L on not equal (zero status flag clear)

Note that the zero flag is equal to zero (that is, clear) if the result of the compare
is unequal to zero.

We can compare to a constant; thus, if the condition is P =3 instead of
P = Q, we could write

LDA P LDX P LDY P

CMP #!3 or CPX #!3 or CPY #!3

BEQ L200 BEQ L200 BEQ L200

We can aléo compare the A register (but not X or Y) to a subscripted variable,
using an index. Thus

DX J ; SET UP THE INDEX J
LbA T,X ; LOAD T (J) AND COMPARE
cMP U, X ; IT WITH U(J), AND GO

BNE DIFFER ; TO DIFFER IF UNEQUAL

goes to DIFFER if T(J) # U(J). Note the semicolons in this example which are
not followed by blanks; as we have noted, this is allowed by LISA.

The branch instructions on the 6502 are conditional; they branch only when
some condition holds. There are also jump instructions, which are like branch
instructions except that they are unconditional; they always go to a certain
place. The main jump instruction is JMP o (Jump to a), which always goes to
the label a; it is like GO TO « in BASIC or FORTRAN.*

A very comm6n error made by beginners is to write an instruction which
branches to ALPHA (say), followed immediately by the label ALPHA. A
sequence like

BCC  ALPHA
ALPHA (mext instruction)

is always wrong. (Think about it a minute. If the carry is clear, you branch to
ALPHA. Otherwise, you don’t branch; so you do the next instruction after the

*We may note that the distinction between the terms ‘branch’” and “‘jump’’ is peculiar to the 6502;
other computers may use these terms in different ways.
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BCC, Wthh is ALPHA. In other words, you go to ALPHA whether the carry is
clear or not!) Whenever you have a conditional branch in your program, make sure
to put something, immediately following it, which expresses what your program

does if it does not branch; that is, if the condition is false.

EXERCISES

1. Give an assembly language form of each of the following BASIC state-

ments (using the label TWENTY to stand for line number 20):

*(a) IF B+C=D THEN 20
(b) IF T (J) +1<>R THEN 20
*(C) IF C—-T(6) =3 THEN 20

2. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements (using the line number 20 to

stand for the label TWENTY):

(@) LDA
SEC
SBC

BNE

*(b) LDY

DEY

BEQ

(©) LDA
CLC
ADC
TAX
LDA
CMP
BNE

W1l
#14
TWENTY

T,X
TWENTY

*3.  What is wrong with the following assembly language code to compare W

with T(J)?
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The zero status flag is very often used in loops on the 6502. In BASIC, aloop is
usually done with a FOR statement, such as

FOR J =1 TO N
(statements in the loop)
NEXT J

In machine language and assembly language, there are no FOR statements, or

their equivalent; we havé to use other statements instead. We can use other
statements even in BASIC; for example, we could write the above loop as

10 J=1 ,

20 - (statements in the loop)
30 J =J+1

40 IF J <=N THEN 20

We can do something like this* on the 6502, but the test at line 40 (J <= N) is
not as easy, on the 6502, as a test for an equal or an unequal condition. Note
that
,
10 J=1
20 (statements in the loop)

30 J =J+1
40 IF J <> N THEN 20

would not be coprect, in this case; the loop would be done only N —1 times, not N
times. The last time through the loop, J would be equal to N — 1; then J is set to N at
statement 30, which means that statemerit 40 does not go back to the start of the
loop.

*If you have not had.loops like this in your study of BASIC, go through the loop above and make
sure you understand why it does the same thing as the FOR loop above it.
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There are several ways to fix this problem. One is to test against N+1, rather
than N:

10 J=1
20 (statements in the loop)

30 J =J+1
40 IF J <> N-+1 THEN 20

On the 6502, this is also a bit harder, unless N is a constant. Another way of fix-
ing the problem is to move J = J+1 up to the beginning:

10 J =0

20 J =J+1 -
30 (statements in the loop)
40 IF J <> N THEN 20

Note that this time we have to start with J =0 instead of J = 1, because
J =J+1adds 1 to 0, the first time through the loop.

This is how loops on the 6502 are quite often done. Let us keep the value of J
in the X register, rather than in a cell in memory called J (this is called register
assignment; we are assigning the variable J to the X register). If the statements
in the loop consist of the single statement T(J) = 0, we can now write

IDX #!0 ; SETJ =0

TXA ; SET A-REGISTER TO ZERO
LOOP  INX ; SET J =J+1

STA T,X ; SETT(@) =0

CPX N ;  COMPARE J WITH N

BNE LOOP ; IF UNEQUAL, GO BACK

As we noted in the preceding section, the CPX will set the zero status flag if
J—N = 0 (that is, J = N), and will clear this flag if J # N. The BNE will then
branch if the flag is clear—in other words, if J # N, which is what we want.

Register assignment is a very useful assembly language programming tech-
nique. Note, in particular, that the A register is also assigned, in this loop; it is
given the constant value of zero. In this way, we do not have to reload it with
zero every time we set a new T(J) equal to zero, and this saves us some time. Of
course, the loop above must be accompanied by a data section containing N
DFS !1 and T DFS # (for some #), at least.

Always remember, when working with expressions such as Q,X or Q,Y in
instructions on the 6502, that it is not permitted to write Q,J or Q,N or the like—
the array name (such as Q) can only be followed by the name of the index register
X or Y). Also, do not treat a constant subscript as if it were a variable subscript.
To load the A register with T(6), do an LDA T + !6 (and do ot do an LDX #!6and
then an LDA T,X—this will work but it takes extra time, an extra instruction, and a
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register that might be used for something else). Note that if you try to treat a
variable subscript as a constant subscript—if you write LDA T + N or the like—
this will be wrong, not just inefficient. (LDA T + N adds the address of Nto T, not

its. vdlue.)

EXERCISES

1. Write a FOR loop* in BASIC which corresponds to each of the following
assembly language programs. In each case, denote the contents of the X
register by J in the BASIC program.

(a)

LOoP

TR54

LDX
INX
LDA

STA

CPX
BNE

BEQ

#10

T, X
U, X
L
LOOP

#!0
w

vV, X
EIGHTY
#1100
TR54

(Use the line number 80 to stand for the label EIGHTY.)

©

LDbX
DEX
LDA
CLC
INX
ADC
CPX
BNE

M

#!0

T,X

N
ADD

#
(Denote the contents of the A register by S, and put the statement
S = 0 immediately preceding the FOR loop.)

lowing FOR loops in BASIC.

*(a) FORJ =1 TO M

TJ) =3
NEXT J

*Make sure that each of your loops has a FOR statement in it.

2. Write an assembly language program which corresponds to each of the fol-
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(Remember that STX T,X is not a 6502 instruction.)

(b) K =0
FOR M =1 TO 50
IF T(M) = WTHEN K = K+1.
NEXT M

(Keep W in the A register throughout the loop. Test whether T(M) = W,
and, if they are not equal, branch ahead to LOOP2.* If they are equal,
you will do the next instruction.)

*(c) FOR I =1 TO K+1
T(I) =T(I) -1
NEXT T

(Use a new variable, KP1, whose value is K+1. Make sure that your
program does not change the value of K; that would be an unwanted
side effect.) :

3. Write an assembly language pfogram which stores zero in T(2), T(4), T(6),
and so on up through T(100). ’

*The instruction IF T(M) = W THEN K = K+1 is not available in some varieties of BASIC. It is
equivalent to a sequence such as :

R

10 IF T (M) <> WTHEN 30
20K=K+1
30 (next instruction)




22. 'MORE ON LOOPS AND ZERO
STATUS

The real power of the zero status flag is that it is set and cleared by many
instructions other than compare instructions. These include:

Load—1pA, LDX, LDY
Increment—1INC, INX, INY
Decrement—DEC, DEX, DEY
Add—anc

Subtract—sBC
Transfer—TAX, TAY, TXA, TYA

and many others that we will see later.
In each case the 6502 tests the result of the operation. If this is zero, the zero
flag is set. Otherwise, the zero flag is cleared.
Thus we can go to NON if Q is not zero by
LDA Q or X Q o DY Q
BNE NON BNE NON BNE NON
Whichever register (A, X, or Y) we load, the zero flag will be set if the result is
zero and cleared if it is nonzero. Thus the BNE will branch if, and only if, Q is
nonzero.
If we want to set Q = R—S and then go to NON if Q is not zero, we can write

LDA/ R ;  LOAD R

SEC ;  REMEMBER TO SET THE CARRY
SBC S ; BEFORE SUBTRACTING S

STA Q ;  STORE (DOES NOT CHANGE FLAGS)
BNE NON ;  IF NONZERO, GO TO NON

Be careful here: the zero status flag is not set by the STA instruction (or by STX
or STY). These instructions do not affect the zero status flag at all.* The flag is

*See Table 3, in the ;—\ppendix, to check which instructions set the zero status flag. (They are those
containing a Z in the ‘‘Flags” column.)
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set by the SBC instruction; if the result of subtraction is zero (that is, Q = 0),
the flag is set. Otherwise, the flag is cléared (and we go to NON).

A very common use of BNE is after a decrement instruction at the end of a
loop. In fact, the most common kind of loop on the 6502 proceeds as follows:

(1) Load a register (usually X or Y) Wlth the number of times the loop is to
be done.

(2) Do a single calculation of the loop.

(3) Decrement the register (usually DEX or DEY).

(4) If the result is nonzero, go back to step 2.

Instead of X or Y, we could also use a cell in memory. If this is called COUNT, then
we decrement it in step 3, using DEC COUNT, and store its initial value in step 1.
We would not normally use the A register for this purpose, since there is no way to
decrement that register (other than SEC followed by SBC #!1).

Of course, this kind of a loop is done ““from back to front.”” Since the index
register starts at N (where N is the count), we do the N-th calculation first. For
example, suppose we are setting T(1) through T(N) to zero; again keeping the
value of J in the X register, as in the preceding section, we can write

ILbX N ; SET J =N

LDA #!0 . SET A-REGISTER TO ZERO
LOOP STA T,X ; SET T(J) =0

DEX i SET J =J-1 v

BNE LOOP ; IF J NOT ZERO, GO BACK

This will set T(N) equal to zero, then TIN—1), and so on. Note that T(0) is not
set equal to zero. The last time through the loop, X will be 1, and T(1) is set to
zero; then X is decreased by 1; and then, since X is now zero, we do not go
back to LLOOP, but go on instead to the next instruction (this is sometimes
called ‘‘falling through’’). As before, N DFS !1 and T DFS n must appear in the
data section of this program.

It is generally true, on any computer, that checkzng to see if a variable is zero
is faster than checking to see whether it is equal to any nonzero quantity. In the

loop dabove, we are testing for zero, and the loop itself contains only three

instructions—STA, DEX, and BNE. In the assembly language loop of the
preceding section we were testing for equal to N, and there were four instructions
in the loop—INX, STA, CPX, and BNE. Three instructions, done N times, are a
lot faster than four instructions, done N times, especially when N is large.
This general rule should affect your appreciation of other programming lan-
guages. In BASIC or FORTRAN, for example, if you have a variable which is
either zero or one and you want to check whether it is equal to 1, check instead
whether it is unequal to zero. When your program is translated into machine

|
\
|
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language by a compiler (if a compiler is used), the resulting machine language
program should be made slightly faster in this way.

Note, when ending a loop with DEX and BNE, not to put any instructions
between DEX and BNE that might affect the zero status flag. Thus, in the
sequence DEX-LDY-BNE, the BNE will branch if Y (not X) is zero. In general,
it reduces confusion if BEQ or BNE is immediately preceded (if at all possible)
by the instruction that sets or clears the zero status flag for it.

EXERCISES

*1. Write an assembly language program, without any compare instructions
(CMP, CPX, or CPY), which corresponds to the following BASIC program:

10 K =0

20 FORJ = 1 TO N

30" IF T(J) <> 0 THEN 50
40 K = K+1

50 NEXT J

Do the assembly language loop from back to front; that is, look at T(N)
first, then T(N—1), and so on. Keep K in the Y register, and store it only
at the end.

2. Each of the assembly language programs in exercise 1 of the preceding
section performs a loop in which the index increases (using INX or INY).
Modify the first two of these loops in such 4 way that the index decreases
(using DEX or DEY).

*3.  How can the following sequence of instructions be improved (see exercise 3,
section 18), and why?

DEY
CPY #10
BNE  BACK
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As soon as we start to consider loops in assembly language, we come across
problems which arise from the fact that, in most arrays T, the element T(0) is
left out, since it is never used. In such an array, the symbol T, in assembly lan-
guage, stands for the cell that contains T(1). '

Figure 10 gives the addresses of ten variables T(1) through T(10), starting at
the address 0859. Note that these addresses are the same as they were in Fig-
ure 9. However, in Figure 9, the address of T was 0858; here, the address of T
is 0859. : :

In section 13, in order to refer to the element T(6), we used the address
expression T+!6 in the instruction. This gave the address 0858+6 = 085E
(hexadecimal). For an array like that of Figure 10, we would have to use
T+16—!1 (or T+!5). This would give the address 0859+6—1 (or 0859+75),
which is again 085E.

VARIABLE 'ADDRESS

T(1) 0859 (=0859—-1+1)
T(2) 085A (=0859—-1+72)
T(3) 085B (=0859—1+3)
T(4) 085C (=0859—1+4)
T(S) 085D (=0859—1+Y5)

" T(6) 085E (=0859—1+6)
T(7) 085F (=0859—1+17)
T(8) 0860 (=0859—1+8)
T(9) 0861 (=0859—1+9)
T(10) 0862 (=0859—1+10)

Figure 10. Addresses of Elements of an Array T Starting from T(1).

Also in section 13, we used the instruction LDA T,Y to refer to T(J), where J
is in register Y. Here we would use LDA T—!1,Y to do the same thing. The
address T—!1 is 0859—1, or 0858, and then the contents of the Y register (that
is, J) are added to 0858, just as they were in section 13.
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The quantity —!1 in both of these examples is the offser. Whenever an array
starts with some T(k) for k # O (here k is 1), then k is the offset and must be
subtracted from T in situations like these. The address of T (that is, the address
of T(k)), minus &, gives the address where T(0) would be kept if there were a T(0) in
the array.

Another important use of offsets is in the case where a subscript contains a
constant added to, or subtracted from, a variable or more general expression.
Consider, for example, T(J +6). We can load this into the A register by

LDA J ; LOAD J AND REMEMBER

CLC ; TO CLEAR THE CARRY

ADC #*16 ; BEFORE ADDING 6 °

TAX ;  PUT J+6 IN THE X REGISTER

bA  T,X TO GET T (J+6)

but it is simpler to write

IDX J ' ;  SET UP INDEX J
DA T+!6,X ; GET T(J+86)

7

The expression T+!6 stands for the address of T, plus 6; and to this the com-
puter adds J (which is in register X). This is exactly the same as adding J+6 to
the address of T, as is done in the first example above. Likewise, T(J—1) could
be stored from the A register, in an array T starting from T(0), by

DX J . ; - LOAD J INTO THE X REGISTER
DEX ; SUBTRACT 1, PRODUCING J-1
STA T, X ; STORE A IN T(J-1)

;
but it can be done in one fewer instruction by

DX J ;  LOAD J INTO THE X REGISTER
STA T-11,X ; STORE A IN T(J-1)

Here, instead of adding J—1 to the address of T, we add J to a quantity equal to
the address of T minus one, which is the same thing.

As an example of offsets in a loop, we can rewrite the program of section 21
to set T(1) through T(N) to zero, where the array T now starts with T(1), as in
Figure 10:

LDX #!0 ;, SET J = 0

. TXA . SET A-REGISTER TO ZERO
LOOP  INX . SET J = J+1
STA T—'1,X ; SET TW) = 0

CPX N ;  COMPARE J WITH N
; IF UNEQUAL, GO BACK
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Note that the program of section 21 did not set T(0), even though the array T, in
that program, was assumed to contain an element T(0). If we wanted to set T(0)
(thus setting a total of N+1 bytes to zero) in that program, we could merely
change the initialization:

LDX  #$FF . SET J = -1 ($FF = -1)

LDA  #!0 . SET A-REGISTER TO ZERO
LOOP  INX . SET J = J+1

STA T,X . SET T(J) = 0

CPX N : COMPARE J WITH N

BNE LOOP :

Starting a loop by setting X = —1 and then immediately doing an INX (which
sets it to zero) is a quite common device, which you Wwill often find uses for. In
LISA 2.5 (though not in LISA 1.5) you can replace #S$FF by #!—1 (or by
#—1) in the LDX instruction. (Note that hexadecimal numbers are generally
taken to be unsigned.) _ -
As another example, we can replace STA T,X by STA T—!1,X in the second

program of section 22, and the resulting program would set all N bytes of the ‘
array T to zero (rather than skipping T(0)). This is useful even when we are not |
thinking of our array T as being like an array in BASIC.

i
IF UNEQUAL, GO BACK

EXERCISES

#1. Do Exercise 1 of the preceding section under the assumption that the array
T starts at T(1) (that is, there is no T(0)).

2. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements. Assume in each case that the
array T starts at T(0).

(a)
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(© DX M
LDA T+!3,X
\ TAX
LDA T+!2,X
STA T,X

3. Show how each of the following sequences of assembly language statements
can be improved (see exercise 3, section 18).

*(a) DX D
INX
LDA T,X

(b)
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We have learned that the sequence of eight zeroes and ones (sometimes called a
bit pattern) in a cell in memory can represent either (a) an unsigned number,
(b) a signed number, (c) part of a 16-bit number (in two bytes), or (d) part of an
instruction code (in one, two, or three bytes). It can also be a code for a charac-
ter. There are many kinds of characters, including:

(1) letters (A, B, C, and so on through Z);

(2) digits (0, 1, 2, and so on through 9);

(3) the blank (thus “A Z” is A, blank, Z);

(4) special characters (., + — */ = ;:$ and so on).

The character codes for these characters, on the APPLE, are shown in Tables
9 and 10 in the Appendix. The special characters are shown in Table 10, and the
others in Table 9.

Each character has several modes. Four of these modes apply to the screen of
the APPLE: - '

(1) normal mode (light characters on a dark background);

(2) inverse mode (dark characters on a light background);

(3) blinking mode (going back and forth between normal mode and inverse
mode—this is sometimes called flashing mode);

(4) lower case (a, b, c, efc., rather than A, B, C, etc.; this is standard on the
APPLE Ile, but requires some optional extra hardware on the APPLE
Im+).* ‘

Two of the modes (normal and control) apply to characters which are typed
on the APPLE keyboard. A character in control mode, or a control character, is
typed by pressing the CTRL (*‘control’’) key and, while that key is being held
down, pressing another key. Thus we speak of “‘control-X*" or “‘ctrl-X,”” for
example, for which we press X while holding the CTRL key down.

*On the APPLE Ile, there is also inverse lower case, which can replace the blinking mode if the user
S0 desires.
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Control-H is equivalent to the backspace (<), which allows us to back up
and correct errors. Control-M is equivalent to the carriage return, given at the
end of a line; after the carriage return, the next line starts in column 1 (see sec-
tion 19). Of course, on a screen, there is no carriage to return, as there is on
many typewriters; but the term continues to be used, for historical reasons.
Both the backspace and the carriage return have their own keys, but most of the
control characters do not. (See Table 9 for other control characters with alterna-
tive meanings.)

Any instruction that acts on a constant may also act on a constant character,
enclosed in double quotes. Thus

CMP O

‘compares the A register with hexadecimal AB, the character code for ‘‘plus”

(in normal mode, that is, as this character would normally be typed in, or
displayed). This is, of course, the same as

CMP #$AB or CMP #%10101011 or CMP #1171

Address expressions may involve constant characters. For example, suppose
that the A register contains a hexadecimal digit from 10 through 15. By sub-
tracting 10 and adding ‘A’ we obtain the character code for the corresponding
hexadecimal character, A through F. If the carry flag is clear, then

ADC #"A"-110

does this i one instruction. For any character ¢, we may use "C asa shorthand
form for #"c" (but "c cannot be part of any address expressions as above).

An English word, phrase, sentence, or paragraph is treated by the computer
as a sequence of characters, often called a string of characters. Each of these
characters is represented by its code. Each code is kept in one cell, and these
cells are kept ir} an array. For example, ENTER THE FIRST NUMBER may be
stored in the célls with addresses 0A40 through 0AS5 as pictured in Figure 11.
(Note particularly the blank characters.)

Note that the character code for a digit is nof the same as the digit itself; thus
the code for 5 is not 5, but 181 (decimal), or B5 (hexadecimal). However, the
codes for the digits are in sequence; the code for n is always 7 more than the code
for zero. Also note that a constant character in quotes is a single character; we
cannot, for example, write #YCR" to denote the code for a carriage return,
although we can write #$8D for this (see Table 9 in the Appendix).

The APPLE character codes are a form of ASCII, which stands for American
Standard Code for Information Interchange. Various forms of ASCII are used
on all microcomputers. LISA also supports a second form of ASCII, in which
the character codes for the letters and digits all have leftmost bit zero, instead of
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ADDRESS CONTENTS

HEXADECIMAL CHARACTER CODE

0A40 c5 E
0A41 CE N
0A42 D4 T
0A43 C5 E
0A44 D2 R
0A45 A0 blank
0A46 D4 T
0A47 Cc8 H
0A48 C5 - E
0A49 AO ‘blank
0A4A 'Cc6 F
0A4B C9 I
0A4C D2 R
0A4D D3 S
0A4E D4 T
0A4F AO blank
0A50 CE N
0A51 D5 U
0A52 CD M
0A53 c2 B
0A54 C5 E
0A55 D2 R

Figure 11. Addresses of Characters of a String in Memory.

leftmost bit 1.* Thus the normal character code for 5 is hexadecimal BS, or binary
10110101, and is represented by “5" (double quotes). In the alternate form, the
character code for 5 is binary 00110101 (with the leftmost bit changed from 1 to 0,
and the rest of the code the same), or hexadecimal 35, and is represented by ' 5
(single quotes).

The character code is a perfectly good secret code, like those of section 1. Thus
PIANO LESSONS STINK would be coded, for example, as

DO C9 C1 CE CF A0 CC C5 D3 D3 CF CE D3 A0 D3 D4 C9 CE CB

EXERCISES
1. Using the character code as a secret code, decode the following messages:

(a)D3 €5 C5 A0 CD C5 A0 C1 D4 AO D3 C9 D8
*(b)D6 €5 CC €D C1 A0 C4 D9 C5 D3 A0 C8 C5 D2 A0 C8 C1 C9 D2
(c)p9 CF D5 D2 A0 C6 CC D9 A0 C9 D3 A0 CF DO C5 CE

*This form is used, for example, on the Commodore 64.




3K 80

Character Codes

Using the character code as a secret code, put each of the following mes-
sages into code: ‘

*(a) NUMBER TOO BIG
(b) LABEL TOO LONG
*(¢) ILLEGAL CODE

Write an assembly language program that sets the X register to —1 if Q
contains the character code for a hyphen (minus sign), and sets the X regis-
ter to zero otherwise. Use double quotes.
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25. INPUT-OUTPUT, SUBROUTINES,
AND “EQU”

On the APPLE we perform input-output by means of subroutines. A subroutine
is called by the instruction JSR, which stands for Jump to Subroutine. Thus
JSR S calls the subroutine S. (In section 60, we will see how JSR actually
works; in sections 69 and 70, we will learn how input-output subroutines are
actually written.)

We will very often use certain basic APPLE system subroutines, such as
COUT (Character Out), which puts a character from the A register onto the
screen; RDKEY (Read Key), which waits until you type a character and then
reads this character into the A register (and also puts it on the screen); and
GETLNZ (a variant of GETLN, Get Line) which reads, using RDKEY, an
entire line of characters (up to a carriage return) and puts them in an array, start-
ing at address $0200, called the standard input buffer or INBUE *

Normally, we use COUT by loading the A register with a character and then
calling it. Thus we can display N characters from an array T, using a loop, as
follows:

LDY #!0 SET INDEX OF FIRST CHARACTER

WLOOP LDA T,Y ;  LOAD THIS CHARACTER
JSR  COUT ;  PUT IT OUT

INY MOVE TO NEXT CHARACTER
CPY N HAVE WE DONE N CHARACTERS
BNE WLOOP

— — IF NOT, LOOP BACK

Whenever we use COUT, we have to tell LISA where it is. As it happens,
COUT has the hexadecimal address FDED. Therefore, somewhere in our pro-
gram, we write

COUT  EQU $FDED
The pseudo-operation EQU (meaning ‘‘equals’’) is used to set a symbol equal to
a value. Thus COUT is set to the value $FDED, which means that JSR COUT is
the same as JSR $FDED (in this program).

*A buffer, in general, is any array used for input-output purposes.
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Similarly, we can use RDKEY by calling it and then storing the A register, or
using this register in any other way. Thus the instructions

! JSR  RDKEY ;  READ ONE CHARACTER
CMP #"yY" ; IS IT A "Y" (FOR "YES")
BNE  ANSENO ;  IF NOT, GO TO ANSWER-NO

will wait for a character to be typed, and then branch to ANSRNO if that char-
acter is not a Y. Note that after JSR RDKEY we do rot need a JSR COUT to
display this character, since RDKEY does this for us.

We can use GETLNZ by calling it, after which the characters which we typed
will be in locations $0200, $0201, $0202, and so on. Thus the following program
reads an input line and prints out a copy of it:

JSR  GETLNZ : GET ONE LINE OF INPUT
LDX  #$FF START AT INDEX = —1
JMP * ECHO2 GET FIRST CHARACTER
ECHO1 JSR  COUT OUTPUT THIS CHARACTER
ECHO2 INX MOVE TO NEXT CHARACTER
IDA  INBUF,X LOAD CURRENT CHARACTER
CMP  #$8D IS IT A CARRIAGE RETURN
BNE ECHO1 IF NOT, KEEP LOOKING
STX  LENGTH STORE NO. OF CHARACTERS
INBUF EQU  $0200 STANDARD INPUT BUFFER
GETLNZ EQU  $FD67 ;  LOCATION OF GETLNZ
CouT EQU  $FDED :  LOCATION OF COUT

)
i
3
’
’
3
’
3
’
s

Note that, whenever we use GETLNZ, we have to tell LISA where it is and also
where INBUF is; and this is done by EQU statements, just as with COUT. As it
happens, GETLNZ has hexadecimal address FD67; similarly, RDKEY has
address FDOC. All these special addresses are given in Table 11 in the Appen-
dix, where COUT, GETLNZ, RDKEY, and many other APPLE subroutines are
more fully described.

EQU is also useful for giving names to other kinds of constants. In the
preceding program, we could have written

CRET EQU $8D
MINUS1 EQU SFF

and then used CMP #CRET instead of CMP #$8D (or LDX #MINUSI
instead of LDX #S$FF).

Usually we read an entire line, rather than one character at a time, because
this gives us a ’chance to correct mistakes. If you use RDKEY, the computer
will immediately act on whatever key you strike, whether it was wrong or not.
Also, RDKEY and GETLNZ use the X and Y registers for their own purposes.
This means that, for example, the following program has a bug in it:
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LDY N ; TRY TO PROCESS N CHARACTERS
RLOOP JSR RDKEY ; READ ONE CHARACTER
(further statements to process this character)
DEY : DECREASE Y AND LOOP BACK
BNE RLOOP ; THIS DOES NOT WORK AS USUAL

because it assumes that the Y register will count downwards: N, N—1, N—2, and
so on. This will not happen because RDKEY uses the Y register for its own
purposes, and so the DEY is not decreasing N by 1, but rather is decreasing some
other quantity by 1, for example, the first time through the loop. Therefore, in a
RDKEY loop, keep the loop count in a cell in memory. We do not have this problem
with COUT, because COUT saves and restores the X and Y registers, a technique
discussed further in section 57.

EXERCISES

1. Describe, in words, what each of the following instruction sequences
does. (Do not simply give comments; the point is to describe what an
entire sequence does, not what each individual instruction does.)

*(a) LDA #!10
STA  LCOUNT
LOOP JSR RDKEY
LDX * LCOUNT
STA REV—!1,X
DEC  LCOUNT

BNE LOOP
(b) JSR  RDKEY
CIVIP # n "
BNE P7
IDA # " $ "
P7 JSR  COUT
*©) JSR  RDKEY
cLe
ADC  #'1
P #'ZH 1
BNE = J4
IDA  #"A"
Ja JSR  COUT

(a) The system subroutine CROUT (at address FD8E) outputs a carriage
return. Give a sequence of instructions which is equivalent to JSR
CROUT, using COUT.
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(b) The system subroutine GETLNZ outputs a carriage return and then
calls the system subroutine GETLN (at address FD6A). Thus we may
use GETLN to get characters which are not necessarily displayed at

" the left-hand end of the screen. (Note that GETLN and GETLNZ
have exactly the same effect on the character codes of the input line;
in both cases, the codes go into the standard input buffer, starting at
hexadecimal address 200. The difference between GETLN and
GETLNZ is only in how these characters are displayed on the screen.)
Give a sequence of instructions which is equivalent to JSR GETLNZ,
using GETLN.

Suppose that, in the program in this section which calls GETLNZ, we
wrote LDA #$8D and CMP INBUF,X instead of LDA INBUF,X and
CMP #$8D. What further improvement in this program would now be
possible? (Hint: Look at what is in the A register in the loop.)




26. CONSTANT DECLARATIONS

There is a pseudo-operation BYT in LISA, which is very much like DFS !1
except that it not only sets aside one byte (hence the name, BYT) but gives that
byte a value. Compare the following: ’

J1 DF'S 11 ;  VARIABLE J1

J2 BYT 16 ; ~ VARIABLE J2, WITH VALUE 6

J3 BYT $20 ;  VARIABLE J3, WITH VALUE 32

J4 BYT "Q" ;  VARIABLE J4, WITH VALUE "Q"

K1 DFS 12 ;  TWO-BYTE VARIABLE K1

K2 BYT $CD ;  TWO-BYTE VARIABLE K2, WITH
BYT $AB H VALUE $ABCD (BYTES REVERSED)

L BYT $10-11 VARIABLE L, WITH VALUE $F

The value given is eight bits long. If you specify more than eight bits, BYT will use
the rightmost eight bits that you specify; thus:

M BYT $1A3D ; .VALUE OF M IS $3D
M1 BYT $256 ; VALUE OF M1 IS $56
M2 BYT 1256 ;  VALUE OF M2 IS ZERO

Suppose now that we want to specify a constant string of characters, such as
the word ERROR, corresponding to the label ERR. We could write

ERR  BYT "E"

BYT "Ry
BYT H'Rn
BYT non
BYT "Ry

but there is another pseudo-operation, ASC (which stands for ‘‘ASCII data’’),
that allows us to do this more simply:

ERR ASC  "ERROR"
We can now display ENTER THE FIRST NUMBER on the screen with
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LDY #10 ;  START AT FIRST CHARACTER
PMSG1 LDA  MSG1,Y ;  LOAD CURRENT CHARACTER
, JSR  COUT ;  DISPLAY THIS CHARACTER
; INY ;  MOVE TO NEXT CHARACTER
CPY #122 ;  ARE ALL 22 CHARACTERS DONE
BNE  PMSGl ; —— IF NOT, LOOP BACK

where MSG1 is defined in the data section, as follows:

MSG1 ASC "ENTER THE FIRST NUMBER”

One problem here is having to count the characters (22 characters in this
case); it is easy to make a mistake. Instead, we can insert a carriage return
($8D) after the message, as follows:

MSG1 ASC "ENTER THE FIRST NUMBER"
BYT $8D ;  CARRIAGE RETURN

and then rewrite the instructions to check for a carriage return:

- LDY .#!0 ; START AT FIRST CHARACTER
PMSG1 LDA  MSG1,Y ;  LOAD CURRENT CHARACTER
CMP #$8D‘ ;IS IT A CARRIAGE RETURN
BEQ DONE ; IF SO, WE ARE DONE
JSR  COUT ; IF NOT, DISPLAY IT
INY . ;  MOVE TO NEXT CHARACTER
JMP  PMSG1 ;  AND LOOP BACK

DONE (next instruction)
;
We can make this easier to understand by writing BYT CRET instead of
BYT $8D and CMP #CRET instead of CMP #$8D (provided that we have
defined CRET EQU $8D as in the preceding section). The instructions above
can also be used to display the standard input buffer (see the preceding section)
because this always contains a carriage return character following the characters
typedin. -

BYT and ASC, in addition to DFS, are called constant declarations. Further
examples of constant declarations are given in sections 63 and 73. In general,
assembly language programming requires a constant declaration for every varia-
ble. Note that there are very often alternatives to BYT. For example, we can replace
LDA J2, where J2 BYT !6 is given, by simply LDA #!6 which saves two bytes,
one for J2 BYT !6 and one because LDA #!6 is a two-byte instruction whereas
LDA J2 is a three-byte instruction.

The double-quote character may itself be contained in a string declared with
ASC, but you write it twice for every time it appears in the computer. Thus, the
constant declaration
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ASC MT'M NOT " “HOT, wno T'M YHCOQLM" M

produces the string I'M NOT “HOT," I'M "COOL" in the computer.

Single quotes may be used in ASC, and produce strings in the computer in
which every byte has its leftmost bit set to zero (see section 24). A single-quote
character may appear in such a string; but, as with double quotes above, it must
appear twice. Thus

ASC 'I''M NOT "HOT," I''M "COOL"'

produces the string I'MNOT "HOT, " T'M "COOL" but with every byte of this string
having its leftmost bit set to zero.

A semicolon may also appear in a string. (This implies that a semicolon
appearing between quotes does not start a comment.) -

EXERCISES

1. Give BYT statements which define:

(a) A variable called K whose value is 99.
*(b) A variable called KPRIME whose value is the APPLE character code
for a plus sign.
(c) A variable called U with the two- byte hexadecimal value $DAFF,
with bytes reversed.

What is the final hexadecimal value of K as calculated by the following
program? (Hint: Use Table 9 in the Appendix.)

ORG $0800
LDA K1
CLC

ADC K2
ADC K3
STA K
ORG 30900

K DF'S 11

K1 BYT "en

K2 BYT $22

K3 BYT %10101
END

3. Rewrite the first program of this section, which prints ENTER THE FIRST
NUMBER, using DEY rather than INY. Use a program section starting at
$0800 and a data section starting at $08A0, and assume that COUT EQU
$FDED has already been specified. (Hint: The usage of ASC in this pro-
gram must be changed. Why, and how?)



27" THE PROGRAM COUNTER AND
RELATIVE ADDRESSING

Besides the A, X, and Y registers, the 6502 has certain internal registers—
““internal’’ meaning that we cannot load them, store them, or use them for any
other purpose since they are used only by the hardware. Among these are an
" 8-bit instruction register (IR) which holds the current operation code byte, and
a 16-bit program counter (PC) register, which holds the address of the current
instruction byte. ’
The computer always proceeds as follows (this is called its instruction cycle):

(1) Load IR with the number in the cell whose address is contained in PC,
and add 1 to the contents of PC. (This step is sometimes called instruc-
tion fetch.)

(2) Execute the instruction whose operation code is in IR. In particular, just
before execution:

(a) If this instruction is two bytes long, some internal register (other
than IR and PC) will be loaded with the number in the cell whose
¢ address is contained in PC, and then the computer adds I to the con-

tents of PC, just as in step 1 above. '
(b) If this instruction is three bytes long, mwo internal registers will be
loaded with the numbers in the two cells with addresses n and
n+1, where n is contained in PC; and then PC is incremented by 2.%

(3) Returntostep 1.
/

The impqrfant point to note is that, in step 2, when we do the current
instruction, the PC register always contains the address of the next instruction in
sequence; but by step 3, PC must contain the address of the next instruction to
be done (which is different, if the computer branches at this point). This is
necessary to know in order to construct the addresses in branch instructions.

*If the instruction is JMP, these two internal registers are then moved to the two bytes of PC; because,
when we go back to step 1, we want to do the instruction fo which we just jumped.
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There are two kinds of instructions on the 6502 that go to a label—the jumps
JMP and JSR, and the branches (BCC, BEQ, and the like). This is not merely
an arbitrary choice of words; it affects the machine language form of these
instructions. '

A jump uses an address like a load, a store, and so on. Thus the instruction JSR
COUT has machine language form 20 ED FD if the address of COUT is FDED.
Here 20 is the operation code for JSR, and then the address, FDED, follows
(with bytes reversed as usual). This instruction loads the PC register with FDED.

A branch to a label L, however, uses a special address called a relative
address. Whereas an ordinary address is an unsigned 16-bit quantity, a relative
address is a signed 8-bit quantity. This is added to the program counter in step 2
above, if the branch is taken.

Every branch instruction is two bytes long, one for the operation code and one
for the 8-bit relative address. If the branch instruction is at the address CA (current
address), then PC contains CA + 2 at step 2, as we have noted. If RA is the relative
address, then CA +2 + RA is the branch address BA—the address of L., where the
branch instruction branches to L.

As an example of this, consider the following instructions:

MACHINE LANGUAGE ASSEMBLY LANGUAGE
0840 AD __ __ LOOP LDA N
0843 F0O 05 BEQ CON
0845 20 __ __ . ’ JSR F
0848 90 F6 BCC LOOP
084A 8D __ __ CON STA Q

The 16-bit addresses of N, F, and Q are immaterial. The main point to ob-
serve here is the calculation of the relative addresses 05 and F6. Let us con-
sider BEQ CON first. Our equation is CA+2+RA = BA. Here CA, the current
address, is 0843; BA, the branch address, is 084A. Thus 0843+2+RA =
084A, from which it follows that RA is 5 (or 05, in two hexadecimal digits).
Now let us consider BCC LOOP. Again the equation is CA+2+RA = BA;
this time CA, the current address, is 0848, and BA, the branch address, is 0840.
Thus 0848 +2+RA = 0840, so that RA is —10 (decimal), or F6 (hexadecimal,
in twos’ complement notation).

In writing assembly language programs, it helps to remember that branch
instructions have only two bytes, while jump instructions have three. For exam-
ple, if we have

BCC ALPHA ;  IF CARRY CLEAR, GO TO ALPHA
JMP BETA ;GO TO BETA

in our program, we can save one byte if we replace it by
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BCC  ALPHA ; IF CARRY CLEAR, GO TO ALPHA
BCS BETA ; IF CARRY SET, GO TO BETA

Note that the BCS will always branch.

More importantly, we cannot branch more than 129 bytes forward, or 126
bytes backward, because the relative address is a signed 8-bit quantity.* If we
have to branch farther than that, we can replace

BEQ ALPHA ; IF EQUAL, GO TO ALPHA

" (for example) by'

BNE BETA ; IF UNEQUAL, DON'T GO TO ALPHA
JMP ALPHA ) ; OTHERWIHSE, GO TO ALPHA
BETA (next instruction)

EXERCISES

*1. Translate the following program into machine language, making sure to
- caleulate all proper relative addresses:

INBUF EQU $0200
FZERO EQU $0860
ERRORZ EQU $0888

ORG  $0840
LDX #1255
‘ CHECKZ LDA INBUF,X
f BNE FZERO
DEX

BNE CHECKZ
STA  ERRORZ
END

2. Atthe timethat STA (in the above program) is being executed, what number is
in the program counter? (Hint: It is nor 084A. Why not?)

*3. Give an assembly language version of the following machine language
program. Assume that the BNE instruction goes to the label FZERO, and

*Note that this limits our ability to replace JMP by a conditional branch as in the preceding paragraph.
*Some programmers make the mistake of following a conditional branch by JMP all the time.
Remember that you can replace BEQ-JMP by BNE, BNE-JMP by BEQ, and so on, unless the
conditional branch would have to branch “‘too far’ as indicated here.
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define FZERO by using EQU, as was done in Exercise 1 above. Assume
also that INBUF is as in Exercise 1.

08E0 A2 FF
08E2 ES8

08E3 DD 00 02
08E6 FO FA
08E8 DO 06




28. SIGN STATUS AND GENERAL
COMPARISONS

* Every 6502 instruction which sets the zero status flag also sets another flag, the
sign status flag, to the sign of the result* (1 if the result is negative, O other-
wise). Two instructions, BPL (Branch on Plus) and BMI (Branch on Minus), act
on the sign status flag like'BEQ and BNE do on the zero status flag:

BPL I  Goto L if sign status flag = 0
BMI L Go to L if sign status flag = 1

Thus we can go to QNEG if Q is negative by

" LDA Q or LDX Q or LDY Q
BMI QNEG BMI QNEG BMI QNEG

Or we can add two signed numbers P and Q, and immediately go to SUMPOS if
the sum is non-negative (that is, positive or zero):

BPL SUMPOS

DA P ; LOAD P AND ADD Q
! e ; (CLEARING THE CARRY FIRST)
ADC Q ;  ADDING Q SETS THE SIGN FLAG

IF NON-NEGATIVE, TO SUMPOS

The main use of the zero status flag, however, does not apply here. We saw
in section 20 that, if P = Q, then P—Q = 0, so that we can test for P=Qby a
compare instrdction (which subtracts) and then a test of the zero status flag.
Now it is also true that if P < Q then P—Q < 0. But we cannot use a compare
instruction, followed by a test of the sign status flag, to test for P < Q (or any
other inequality test). This is true regardless of whether P and Q are signed or
unsigned.

It is important to understand the reason for this. Let us consider unsigned data

*An exception to this rule is given in section 55.
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first. If P is 3 and Q is 5, then P—Q is —2, which is indeed negative. But now
suppose that P is 100 and Q is 229. Then P—Q is —129, which should be nega-
tive; but, as a pattern of eight bits, it is not. In fact, 129 has the bit pattern
10000001 (decimal 128+1); so it has a negative sign, and tests as negative.
The twos’ complement of this is 01111111; this would represent —129, but it
has a positive sign.

The same problem comes up if P and Q are signed. Suppose that P is —29
and Q is 100. Then P—Q is again —129, and again this does not have a negative
sign in an eight-bit representation.

For unsigned numbers, the solution to ‘this problem is to use the carry flag.
We recall that P < Q if there is borrow when we subtract Q from P (or compare
P with Q), and the carry flag is set to zero. Hence we can branch on carry clear
toL, and this will goto L if P < Q: :

LDA P LDX P LDY P
cMPQ or  CPX Q. or  CPY Q
BCC L BCC L BCC L

Similarly, we can go to L if P = Q by branching on carry set:

LDA P LDX P LDY P
CMP Q or CPX Q or CPY Q

BCS L BCS L . BCS L

To test for P < Q, we use a trick. The condition P < Q is the same as the condi-
tion Q = P, so we can test for this:

LDA Q LDX Q 1LDY Q
CMP P or CPX P or CPY P
BCS L BCS L BCS L

In the same way, we can test for P > Q by testing for Q <P:

LDA Q LDX Q LDY Q
CMP P CPX P CPY P
BCC L BCC L BCC L

The above sequences are very useful, but sometimes hard to remember; refer to
them as you would to a table. Comparison of signed numbers will be taken up in
sections 54 and 56.

If you are using sequences like these several times in a single program, be
careful not to use the same label (such as L, here) more than once. All labels in an

|
|
|
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assembly language program must be distinct, just as all line numbers in a BASIC
program are distinct.*

So far, we have studied four registers, namely A, X, Y, and the program
counter, and three status flags, namely the zero, carry, and sign flags. There are
many more registers and flags on the 6502, and these are described in Table 12
in the Appendix. (Also refer to the second column in Table 3 for the status flags
set by each instruction: Z for the zero flag, C for carry, S for the sign flag, and V
for another flag which we shall meet in section 56.) The remaining registers
and flags will be studied in greater detail as we proceed through the book.

The LISA assembler atlows you to write BLT (Branch on Less Than) instead

of BCC, and BGE (Branch on Greater or Equal) instead of BCS. This may help

you to understand your own programs better, so you do not have to think back,
every time, as to why you are branching on carry clear or on carry set.

EXERCISES

1. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements. Use the line number 50 to
-correspond to the label FIFTY; assume that the array T starts at T(0), while
the array U starts at U(1).

(a) LDA Q1
cLC
ADC Q2
CMP  #!10
; BCC  FIFTY
*(b) DY J
DA U-'1,Y
DY K
PP  U-1,Y
, BCS FIFTY
(©) IDA W
IDX K
CMP  T+!5,X
BCC  FIFTY

2. Give an assembly language form of each of the following BASIC state-
ments (omit ORG, END, and DES). Use the label FIFTY to correspond to

*Local labels in LISA 2.5 (see the LISA 2.5 manual) are an exception to this general rule.
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the line number 50; assume that the array T starts at T(0), while the array U
starts at U(1).

*(a) IF A2>=T (K+1) THEN 50
(b) IF U(5)<=U(6) THEN 50
*(c) IF U(U(J))>2 THEN 50

3. 'What is wrong with the following method of going to ONE if the signed
quantity J is positive, to TWO if J is zero, and to THREE if J is negative?

A J
BPL ONE
BEQ TWO

JMP  THREE




29. TWO-BYTE COMPARISONS

When we add two numbers of two bytes apiece, we add them from right to left.

When we compare these same two quantities, however, we compare them from

" left to right. Suppose that we are comparing 19 with 25; we cannot start on the

right, because 9 is greater than 5 but 19 is less than 25. We say that the 9 and
the 5 are less significant than the 1 and the 2.

- Inany two-byte quantity ab, a is the most significant byte (MSB) and b is the

least significant byte (LSB). Similarly, for quantities of two hexadecimal (or

decimal) digits, we havethe most significant digit and the least significant digit.

The following program branches to ALPHA if P < Q, assuming that P and Q
are 16-bit quantities kept with bytes reversed:

" LDA P+!1 ;  COMPARE MSB'S FIRST

CMP Q+!1 ;  IF UNEQUAL, THEN P IS LESS
BNE DECIDE" THAN Q IF CARRY IS CLEAR
DA P ;  OTHERWISE, COMPARE LSB'S
CMP Q i AND AGAIN P IS LESS THAN Q
DECIDE BCC  ALPHA ; IF CARRY IS CLEAR

We saw in the last section that P < Q if the carry is clear after comparing P and
Q. Suppose now that the most significant bytes, at P+!1 and Q+!1, are
unequal. In that case the least significant bytes do not matter; we go to
DECIDE, and we compare only the most significant bytes. (The carry flag is
not changed by the BNE.)

If the most significant bytes are equal, then we look at the other two bytes (if
our two-byte quantities are ab and ac, then ab < ac is equivalent to b < ).
Note that the same BCC instruction is used to compare the MSBs or the LSBs,
depending on whether the MSBs are equal.

To go to ALPHA if P = Q, we simply replace BCC by BCS:

LDA P+!1 ;  COMPARE MSB'S FIRST

CMP Q+!1 ; IF UNEQUAL, THEN P IS NOT LESS

BNE  DECIDE H THAN Q IF CARRY IS SET

IDA P ;  OTHERWISE, COMPARE LSB'S

" CMP Q ;  AND AGAIN P IS NOT LESS THAN Q
; IF CARRY IS SET

DECIDE BCS ALPHA
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To goto ALPHAif P < Q, we go to ALPHA if Q = P, as before:

COMPARE MSB'S FIRST
P  P+!1 IF UNEQUAL, THEN Q IS NOT LESS
BENE DECIDE THAN P IF CARRY IS SET

IDA Q+!1 ;
ILDA Q . OTHERWISE, COMPARE LSB'S

CMP P AND AGAIN Q IS NOT LESS THAN P
DECIDE BCS  ALPHA IF. CARRY IS SET

Finally, to g0 to ALPHA if P > Q, we go to ALPHA if Q < P:

COMPARE MSB'S FIRST
CMPF P+!1 IF UNEQUAL, THEN Q IS LESS
BNE DECIDE THAN P IF CARRY IS CLEAR

IDA Q+!1 ;
ILDA Q ;  OTHERWISE, COMPARE LSB'S

CMP P AND AGAIN Q IS LESS THAN P
DECIDE BCC  ALPHA IF CARRY IS CLEAR

Like the 8-bit compare, the 16-bit compare does not require the A register. We
can substitute LDX (or LDY) for LDA, and CPX (or CPY) for CMP, throughout
these programs, if desired. As with L in the preceding section, we may note that the
label DECIDE, in these seqiences, has to be replaced, in an actual case, by some
unique label if more than one such sequence is to be used in the same program.

Another term that is often used for the most significant byte, in a two-byte
quantity, is the high-order byte. The least significant byte is then the low-order
byte. (We saw in section'12 that these can also be called the left half and the
right half, or the upper half and the lower half’)

EXERCISES

#1. Write an assembly language program to branch to LESS if P+Q <R,
where P, Q, and R are 16-bit quantities with bytes reversed. Omit ORG,
END, and DFS. (Hint: You will need a temporary place to keep the lower
half of P-+Q until it is used in the comparison. Keep it in the X register.)

2. Write an assembly language program to branch to LESS if P < Q, where
P and Q are 24-bit quantities with bytes reversed. (Do not use a loop.)

*3.  Write an assembly language program to branch to LESS if P < Q, where
P and Q are N-byte quantities (N is a signed integer variable). Use a loop.
(Start with LDX N and LDA P—!1,X. Be careful of the case in which

P=Q)




30. TWO-BYTE INCREMENT,
DECREMENT, AND COMPLEMENT

A number of further operations on two-byte quantities make use of instructions
which we have already learned. For example, consider adding 1 to a two-byte
quantity. It should be clear that just adding 1 to the lower half (or to both
halves) will not work. If we study the examples

26 83 49
+1 F1 +1
27 84 50

of adding 1toa two-digit quantity, we see that 1 is added to the second digit,
while the first digit stays the same unless the second digit becomes zero. In that
case, 1 is added to the first digit. So the assembly language program to add 1 to
a two-byte quantity V, with bytes reversed, becomes

INC V  ; ADD 1 TO LOWER HALF
BNE P17 ; HAS INC SET THE ZERO FLAG
INC V+!1 : IF SO, ADD 1 TO UPPER HALF

! . .
P17 (next instruction)

Now suppose we wish to subtract 1 from a two-byte quantity. If we study the
examples

Y 27 84 50
it § il § =1
26 83 49

of subtracting 1 from a two-digit quantity, we see that 1 is subtracted from the
second digit, and also from the first digit if the second digit was originally zero. We
cannot use DEC V followed by BNE, because this tests whether V becomes zero.
Therefore the -assembly language program to subtract 1 from V, as described
above, is
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LDA V . LOOK AT LOWER HALF
BNE P17 . IS IT ZERO
DEC V+'1 . IF SO, DECREMENT UPPER HALF

P17 DEC V ALWAYS DECREMENT LOWER HALF
Here LDA, of course, could be replaced by LDX or LDY.

The easiest way to form the twos’ complement of a two-byte quantity is to
subtract it from zero, using the two-byte subtraction method of section 17.
Thus to set V2 = —V1, where V1 and V2 are two-byte quantities like V above,
we could write

LDA #10 ;  SUBTRACT LOWER HALF OF V1
SEC ;  (SETTING THE CARRY AS USUAL)
SBC V1 ;  FROM LOWER HALF- OF A 16-BIT
STA V2 ; ZERO CONSTANT (BOTH BYTES 0)

LDA #!0 NOW SUBTRACT THE UPPER HALF
SBC Vi+!1 FROM ZERO, WITH THE BORROW
STA  v2+!1 . FROM THE PREVIOUS SUBTRACTION

Note that the twos’ complement of a two-byte quantity is not formed by taking
the twos” complement of each byte. In fact, if cd is the twos’ complement of
ab, then d is the twos’ complement of b, but, unless d = b = 0, c is the ones’
complement of a.

We may note the curious fact that the BNE, in either of the first two
sequences above, always branches five bytes ahead—two for the BNE instruc-
tion itself, and three for the following INC or DEC. A BNE instruction which
branches five bytes ahead may always be written as

BNE *+15

The character * or something like it (sometimes $ or .) may be found in all
assembly languages. It stands for *“‘the location of the current instruction”; thus,
for example, JMP #+!17 and ALPHA JMP ALPHA+!17 are equivalent. It may
theoretically be used for all branches in a program; but it is dangerous when
used in this way, for one good reason. If you change your program, by putting
new instructions in or taking old ones out, several of the constants may change.
(For example, if you make such a change between ALPHA and BETA, and you
are using ALPHA+!17 to refer to BETA, then the number of bytes between
ALPHA and BETA will almost certainly change, from 17 to some other number
n, and ALPHA+!17 must be changed to ALPHA+!n.) It is very easy to forget
to change one of these constants, and this produces a bug in your program that
is almost impossible to find. This is because the incorrect program might branch
to a byte that is not an operation code; it might be an immediate data byte, or
one of the bytes of an address, but, whatever it is, the computer will assume that
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as we learned in section 27.)

EXERCISES

P DFS
Q DFS

kept witP bytes reversed.

tity P, kept with bytes reversed.

Two-Byte Increment, Decrement, and Complement

it is an operation code, producing totally unpredictable results. (This is called
“‘going out of alignment’’; see also sections 45 and 55.)

In general, all of the instructions to which your program can branch, or
jump, ought to have labels. The only reasonable exception to this is in an
instruction like BNE * + !5 above, where a standard and very short sequence of
instructions is being used.* In any case, remember that the constant 5 is a
number of bytes, and not, as it would be on some other computers, a number of
instructions. (The machine language form of BNE *+15 is always DO 03; the
relative address is 3 here, since the two bytes of the BNE itself are not counted,

1. Give a BASIC statement which corresponds to the following sequence of
" assembly language statements, assuming that P and Q are 16-bit quantities:

12
12
P

Q
P+11
Q+!1
L4

Q
Q+!1

*2. Write an assembly language program to add 1 to a three-byte quantity P,

3. Write an assembly language program to subtract 1 from a three-byte quan-

*Even this usage can be avoided in LISA 2.5, by writing BNE >1 where "1 (not >1) is a local label.
(See the LISA 2.5 manual for a description of local labels.)




31. MULTIPLYING AND DIVIDING BY
TWO

In the decimal number system, putting a zero on the end of a number is the
same as multiplying it by 10. We saw in section 3 that putting a zero on the end
of a binary number multiplies it by 2; thus 11011, in binary, times 2 is 110110.

In a register, this multiplication by 2 means that each zero-bit or one-bit is
shifted to the left:

BRRnnpnn

o|lojijtriofjrfr1|o

with a zero-bit always inserted at the right. There is an instruction which does
this to the A register: ASL (for Arithmetic Shift Left).

The instruction ASL will also multiply a signed number by 2, even if it is
negative. This is because ASL performs the unsigned calculation A = 2*A, or
A = A+A; but we saw in section 7 that the operations of signed addition and .
unsigned addition are the same, if the twos’ complement representation is used.
Therefore ASL ‘also performs the signed calculation A = A+A, which is the
same as A = 2+A, just as before.

The inverse operation to multiplying by 2 is dividing by 2. This is done,
naturally, by shifting to the right, as follows:

[ofol [ o]l ]e]

o{ofo|l1 1ol 1

with a zero-bit always inserted at the left. The instruction which does this to the
A register is called LSR (for Logical Shift Right).

Unlike ASL, LSR does not work properly on negative numbers. In fact, the
result of an LSR shift is always positive or zero, since LSR shifts in a zero-bit at the
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the left. An arithmetic shift, in general, is any shift that always multiplies or
divides properly. A logical shift, by contrast, is any shift that always intro-
duces a zero-bit. (ASL is a logical shift as well as being an arithmetic shift.)

Both ASL and LSR can shift directly in memory, as well as shifting the A
register. Thus ASL Q multiplies Q by 2; LSR Q divides the (unsigned) quantity
Q by 2. One can even shift an indexed quantity as long as the register X (and
not Y) is used. Thus ASL T,X multiplies T(J) by 2 if the array T starts from
T(0) and J is in the X register. Under the same conditions, LSR T,X divides the
unsigned quantity T(J) by 2. (On the other hand, the X and Y registers cannor
. be shifted directly on the 6502.)

Both ASL and LSR are sometimes used to multiply or divide by 4, 8, and
other powers of 2, simply by repeating them. Thus ASL Q followed by another
ASL Q multiplies Q by 4, for example, since (Q*2)*2 =Q*4. (Do not make the
common mistake of trying to multiply by 3, rather than 4, by shifting twice.)
Note that ASL Q and LSR Q, like INC Q and DEC Q, do not change the A
register. o

The bit which is shifted out (to the left, for ASL, or to the right, for LSR) is
not lost completely. Instead, it is put in the carry status flag. For LSR, this
gives us a way to go to ODD, for example, if the A register is odd:

LSR ;  SHIFT RIGHTMOST BIT INTO CARRY
BCS ODD ; IF IT WAS 1, THEN A WAS ODD

since an odd number, in the binary system, ends with a one-bit, while an even
number ends with a zero-bit (see the end of section 3). For ASL, it is the nor-
mal carry from the multiplication by 2 which goes into the carry status flag. If z
is the quantity being shifted, then, if 2+z < 256, the carry flag will be set to
zero. This fact can often be used to advantage; thus, in the sequence

DA Q@ ; PUT Q IN A-REGISTER
ASL ;  PUT 2#Q IN A-REGISTER
ADC  Q ; 2%Q + Q = 3*Q
p STA V ; SET V = 3*Q
we do not need to do a CLC before the ADC, since the carry flag is zero (other-
wise the answer is wrong anyway because 3+Q cannot fit into a single byte if
2#Q) does not).*

Another use of the carry flag after LSR is in *‘rounding up.”” LSR *‘rounds
down”’; thus, for example, 21 divided by 2, using LSR, is 10 (the next integer
less than 21/2 or 10/%). If we wanted to “‘round up,” producing 11 in this case (the

*If we are multiplying a signed quantity Q by 3, we need the CLC, because now the carry 1lag will
be set to 1 by the ASL whenever Q is negative.



e

4
¢
i

Multiplying and Dividing by Two 103

next integer greater than the answer), we would use ADC #!0 after the
LSR. This adds O if the A register was originally an even number (and thus the
answer is exact); and it adds 1 if the A register was originally odd.

The zero and sign status flags are also set in the normal way by ASL and
LSR; that is, they are set to the zero status and the sign status of the result of the
shift. (See Exercise 1, section 33, for an application of this.)

On some computers, there are shift instructions which will shift by more than
one bit. The absence of such instructions is only a minor inconvenience on the
6502, however, since a one bit shift may always be repeated as many times as
necessary. ‘

EXERCISES

1. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements:

*(a) DA Q
ASL
ASL
ADC R
STA P
(®) IDA G
SEC
SBC H
LSR
STA F
*©) IDA Bl
ASL
ASL
ASL
STA B2

2. What does the sequence, LSR followed by ASL, do to the contents of the
A register?

*3.  What is wrong with the following program to set S = T(2*M)? (Assume
that the array T starts at T(0).)

LDX M
ASL X
LDA T,X

" STA S




32. ARRAYS OF TWO-BYTE
QUANTITIES

There are two ways of keeping an array of 16-bit, or two-byte, quantities. One
way is simply by keeping two arrays. For example, if we want to keep T(0)
through T(99) as two-byte quantities, we can keep two arrays, each 100 bytes
long, called UPPERT and LOWERT (and defined by UPPERT DFS !100 and
LOWERT DFS !100). To branch to LESS if T(J) < T(K), for example, we
might write (using a 16-bit comparison process from section 29):

DX J
DY K

; SET UP INDEX J

; SET UP INDEX K
LDA ~ UPPERT, X ; COMPARE UPPER HALF OF
CMP  UPPERT,Y ; T(J) TO UPPER HALF
BNE  DECIDE ; OF T(K). IF EQUAL,
LDA  LOWERT, X ; THEN COMPARE LOWER
CMP LOWERT, Y ; HALF OF T(J) TO

DECIDE BCC- LESS ; LOWER HALF OF T (K)

The arrays LOWERT and UPPERT are sometimes called parallel arrays.

The other way is to keep one array T (defined, in this case, by T DFS !1200),
as in Figure 12. Notice, however, that, if we do this, we cannot use the X and Y
registers in quite the same way as in the program above. To see why, suppose
that 3 is in the X register. Now turn back for a moment to Figure 9. Here the address
of T(3) was egual to the address of T(0) plus 3; but, in Figure 12, we have to add
six, not three;to the address of T(0). In general, in a serial array like that of Figure
12, we put-twice the index, rather than the index itself, into the index register.

To do this, we load the index into the A register first; then multiply it by 2,
using ASL (as in the previous section); and then move it to X (or Y). This lets
us use LDA T, X to load the A register with the lower half of T(J), for example.
If we wanted the upper half, whose addre$s is one more than this, we could
write LDA T+!1,X (using another offset as in section 23). To branch to LESS
if T(J) < T(K) under these conditions, we might write (using the same 16-bit
comparison as before):
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VARIABLE ADDRESS

T(0) (lower) 0858 = 0858 + 20
T(O) (upper) 0859 = 0858 +20 +1
T(1) (lower) 085A = 0858 + 2x1
T(1) (upper) 085B = 0858 +2x1 +1
T(2) (lower) =~ 085C = 0858 + 2+2
T(2) (upper) 085D = 0858 +2%x2+1
T(3) (lower) 085E = 0858 + 2%3
T(3) (upper) 085F = 0858 +2x3+1
T(4) (lower) 0860 = 0858 + 24
T(4) (upper) 0861 = 0858 +2x4+1 ,
T(5) (lower) 0862 = (858 + 25

T(5) (upper) 0863

0858+ 25 + 1

T(99) (lower) 091E
T(99) (upper) 091F

0858 + 2x99
0858 + 2%99 + 1

-1

Figure 12. Addresses of Elements of an Array of Two-Byte Quantities.

DA J SET UP INDEX J (MUST
ASL BE MULTIPLIED BY 2
TAX AND PUT 1IN X)

LDA K SET UP INDEX K (MUST
ASL BE MULTIPLIED BY 2
TAY AND PUT IN Y)

ILDA T+!1,X ; COMPARE UPPER HALF OF
CMP T+!1,Y T (J) TO UPPER HALF
BNE DECIDE ; OF T(K). IF EQUAL,
LbA T,X ; THEN COMPARE LOWER
CMP T,Y ; HALF OF T (J) TO

DECIDE BCC LESS ; LOWER HALF OF T (K)

If a serial array T, such as this one, starts with T(1) rather than T(0), another
kind of offset is needed. Note that in this case the first two bytes of the array,
rather than the first one, are omitted, so that T—!2 rather than T—'1 is used in
the instructions which reference T(J). In fact, the last six instructions above
become

LDA T-!1,X ; COMPARE UPPER HALF OF
CMP  T-!1,Y ; T(J) TO UPPER HALF
BNE DECIDE ; OF T(K). IF EQUAL,
IDA T-12,X ; THEN COMPARE LOWER
CMP T—12,Y ; HALF OF T(J) TO
DECIDE BCC LESS :  LOWER HALF OF T (K)

under these conditions. (Here T—!1 is actually T+!1—12.)
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Constant indices in serial arrays of two-byte quantities must also be multi-
plied by 2. Thus T(3), if the serial array T starts at T(0), is kept, not at T+!3,
but at T+!6 and T+!7. Similarly, if an index in such an array contains a con-
stant that is added or subtracted, this constant must be multiplied by 2. Thus the
following program sets W equal to T(N+3) under these conditions:

LDA N H SET UP INDEX N (MUST

ASL :  BE MULTIPLIED BY 2

TAX : . AND PLACED IN X)

LDA T+!6,X ; ADDRESS HERE IS (T+6)

STA W ;  +(2#N), WHICH IS EQUAL

DA T+!7,X -; TO T+2#(N+3) — — THIS
;  SETS W = T(N+3)

STA W+!1

where we must be careful, as before, not'to use T+!3 in the program.

In the examples of this section, we used both X and Y, in many cases,
because this was necessary. In general, however, you should try to use as few
registers as you can (without sacrificing space or time). This is because, as your
prograins get larger, you will be able to make good use of any registers that you
have carefully stayed away from.

EXERCISES

1. Write an assembly language program to correspond to each of the follow-
ing BASIC statements, under the assumption that the serial array T, of
16-bit quantities, starts at T(0), and that B is a 16-bit quantity:

t
*(@) B=T(5)
(b) T(x) =B
*(C) B=B+T (K-3)

2. Write an assembly language program to correspond to each of the BASIC
statemefts of Exercise 1 above, under the assumption that T is kept in two
parallel arrays, LOWERT and UPPERT, starting from LOWERT(1) and
UPPERT(1), and that B is a 16-bit quantity. ‘

*3.  Write an assembly language program to branch to LESS if T(J) < T(K),
under the assumption that T is a serial array of 24-bit quantities, starting
from T(0), with bytes in normal order (that is, not with bytes reversed).
Do not use a loop. (Hint: This time, it is. not correct to multiply the
indices J and K by 2, using ASL. Why not?)




33. MULTIPLYING BY TEN

There is no instruction on the 6502 that multiplies two arbitrary numbers. This
must be done by means of subroutines (see sections 39 -and 40). However, we can
multiply the A register by 10 in five instructions, as follows:

ASL ; SET A TO 2+A

STA TEMP = ; SAVE 2*A IN TEMP

ASL ;  NOW MULTIPLY THE

ASL ;  ORIGINAL A BY 8

ADC TEMP ; 8#%A + 2#A = 10%A

This sequence saves 2*A in a temporary location, here called TEMP, and then
uses it later. In general, a temporary location is a place that is used in short cal-
culations like this one, and whose value is not needed after the short calculation
is finished. Note that we do not need CLC before ADC (if our numbers are
unsigned), for the same reason as at the end of section 31.

Suppose now that we have an integer N between 0 and 255, expressed in
character code form somewhere in an array B of characters. We would like to
calculate N and put it in the Y register. The character codes for the digits of N
are in sequence, starting with B(J), where J is in the X register, and terminated
by a non-digit. (For example, if N is two digits long, then B(J) and B(J+1) are
the two digits, in character code form, while B(J+2) is not the character code
for a digit. Note that we do not know, in advance, whether N has one, two, or
three digits.) We may proceed as follows:

. Set N to zero. _

. If B(J) is not the character code for a digit, stop.

. Convert B(J) into its corresponding digit D. (For example, if B(J) = 7
or hexadecimal B7, then D = 7. See Table 9 in the Appendix.)

. Set N = 10#N+D. (For example, if N is 15 and D is 4, then N becomes
154, because 10+N+D = 10%15+4 = 150+4 = 154.)

. Increase J by 1 (so we can look at the next character in the array B) and go
back to step 2.

The following program does this. Note that steps 2 and 3 above are com-
bined. We test whether B(J) > “9” (actually, BJ) = “9” +1). If so, we are
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done (step.2). If not, then the carry must be clear (otherwise we branched on
carry set). We want to subtract “0”—the character code for zero—to convert
B(J) into D' (step 3; in hexadecimal, this subtraction is B7—B0 = 07.) There-
fore we subtract ““0”” minus one, but with borrow (since we know the carry flag
is clear, indicating a borrow status); and this subtracts “‘0”” without doing an
SEC first, thus saving one instruction. If B(J) was less than ‘0’ then this sub-
traction will produce borrow, leaving the carry flag clear, and we branch to
DONE again. If B(J) is neither less than ‘0" nor greater than ‘9’ then it must
be the character code for a digit, and we proceed to step 4 above. (For another
application of the basic idea of this program, see section 62.)

ORG  $0860 . START OF PROGRAM SECTION

DY #!0 . KEEP N IN REGISTER Y
CONV LDA B,X _ ; GET NEXT CHARACTER

CMP  #"gn+1!1 : IS IT CREATER THAN "9"

BCS DONE . YES, END OF NUMBER

SBC #r1on-=11 CONVERT FROM CHARACTER CODE

BCC DONE TO DIGIT D (IF THIS IS
STA D LESS THAN ZERO, END'OF NUMBER)
TYA : MOVE N (FROM Y) TO A
ASL . %k FIVE INSTRUCTIONS sk
STA TEMP ;  wkt FROM START OF o
ASL » sk THIS SECTION Aok
ASL ;  sekx  (MULTIPLY A stk
ADC TEMP ; sxkk BY 10) kK
ADC D :  A=10%N+D (NO CLC NEEDED)
TAY ", N=10=N+D
INX . BUMP THE CHARACTER INDEX
p JMP  CONV : AND GET NEXT CHARACTER
DONE (next instruction)
ORG  $0920 :  START OF DATA SECTION
D DFS 1 : CURRENT DIGIT
TEMP DFS !1 . TEMPORARY STORAGE FOR 2%Y
B DFS 1256 ' ARRAY OF CHARACTERS

When we are (},one with the character B(J), we pass to the next character,
B(J+1), by setting J = J+1, or (since J is kept in the X register) by increment-
ing X. This is popularly known as ‘‘bumping’” X (or J). We may note, in the
above program, the register assignment (see section 21) of N to the register Y.

Multiplication by integer constants other than 10 is similar, and, in particu-
lar, never involves CLC, because, if the answer fits into one byte, the carry flag
will always be clear throughout the multiplication.

EXERCISES

1. Give a BASIC statement which is equivalent to each of the following
sequences of assembly language statements. Your BASIC statement
should contain no plus signs.
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*(a)

(b)

*(©)

3
H

STA
ASL

HHaAa4

2
c<

STA
ASL
ASL

ASL

STA U

IDA G
ASL, '
ADC G

ASL
ASL
ADC
STA

= Q

2. Does the sequence of instructions

*3.

divide the A register by 10? If not, what does it set the A register to?

LSR
STA  TEMP
LSR
LSR
CLC

'ADC  TEMP

Consider the following sequence of instructions:

LDA
CMP
BCS
SBC
BCC

B,X
#n9n411
DONE
#non—11
DONE

)

’

GET NEXT CHARACTER

IS IT GREATER THAN "9" .

YES, END OF NUMBER

SUBTRACT "O" WITH CARRY

IF LESS THAN 0, END OF NUMBER

109

as described in the text for checking whether the next character is numeric
(between “‘0”’ and “*9”’, inclusive) and converting it from a character
code to an integer. Is there a similar sequence of five instructions in which
SBC comes before CMP? If so, what are the constants involved? If not,
why not?




34. ‘ROTATION AND 16-BIT SHIFTING

Suppose now that we have a two-byte (16-bit) unsigned number which we want
to multiply by 2. Can we simply shift both bytes to the left? There is one prob-
lem with this, as illustrated below:

UPPER HALF LOWER HALF

ERNERREEEEEEEERRRE
T,
HEREENEE .
As we can seg, all 16 bits are shifted properly except for the one in the middle,
which should go from the lower half into the upper half.

Let us shift the lower half first. Then this bit, the leftmost bit of the lower
half, goes into the carry status flag, as noted in section 31. What we need now
is an instruction which shifts the upper half to the left, but which also shifts the
carry flag into the rightmost bit of the upper half. Such an instruction is ROL
(Rotate Left).

Like ASE., ROL shifts the leftmost bit of the given register or cell in memory
(call it z) into the carry flag. We can think of z, together with the carry flag, as a

nine-bit cycle, and ROL moves the bits around the cycle (hence the name
‘“‘rotate’”), thus:

1T

" CARRY

We can apply ROL to the A register or to memory, possibly indexed by the X
register, just as we can with ASL. For a 16-bit quantity M with the lower half in
M and the upper half in M+!1, as usual, we would write

ASLL. M ; 16-BIT SHIFT
ROL M+!1 TO THE LEFT

to shift it left by 1. (This is often called a double shift.)

110
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A similar problem arises in shifting a 16-bit number to the right:

UPPER HALF LOWER HALF

HEREEEEE

HENERRRN
SSRRRRR R SRR

As before, there is one bit which is not shifted properly. If we shift the upper
half first, then this bit goes from the right-hand end of the upper half into the
carry flag. Now we need an instruction which shifts the lower half to the right,
and which also shifts the carry flag into the leftmost bit- of the lower half. This
instruction is ROR (Rotate Right), which has the same rotation properties as
ROL, as seen below for ROR z:

G TR R

CARRY z

As with ROL, we can apply ROR to the A register, or to memory, possibly
indexed by the X register. For the 16-bit quantity M as above, we would write

LSR M+!1 ; 16-BIT SHIFT
ROR M H TO 'THE RIGHT

to shift it right by 1. (As before, this is a double shift.)

The ROR instruction can be used to divide a signed quantity by 2, after the
original sign bit is put into the carry flag by ASL. Thus to divide the A register
by 2, as a signed quantity, we might write

TAX ; SAVE A IN X

ASL ;  LEFTMOST BIT TO CARRY FLAG
TXA ;  RESTORE A FROM X

ROR ;  SIGNED RIGHT SHIFT

The ROR will shift to the right, but the leftmost bit of the A register, under
these conditions, will be the same as it was before. If it was 0, it will still be O,
if it was 1, it will still be 1. This is necessary in dividing by 2, because, if z is
positive, then z/2 is positive, while if z is negative, then z/2 is negative. A shift
like this is often called a sign-extending shift, since the sign bit is both
preserved and extended to the right.*

*Any sign-extending shift is an arithmetic shift, since it divides properly. On some computers, there
is a single instruction which performs a sign-extending shift.
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Like ASL and LSR, ROL and ROR set the zero and sign status flags, and in
the usual way, as discussed at the end of section 31. Note that the final program
above saves the A register in X, and then restores it (that is, brings it back into
A). This is a quite useful technique whenever the X (or Y) register is free.

EXERCISES

1. (a) Write an assembly language program to set N = 10#N + D, where N
and D are both two-byte quantities with bytes reversed. (Hint: Use the
process you have already learned for multiplication by 10; but use
16-bit, rather than 8-bit, shifting and addition.)

*(b) Write an assembly language program to shift a 24-bit quantity P, with
bytes reversed, to the left by 1.
(c) Write an assembly language program to shift an N-byte quantity P
) (where N is variable), with bytes reversed, to the right by 1. Use a
loop.

#2. In adding a column of two-digit numbers, such as

12
14
39

*27
92

by hand, we normally add all the right-hand digits first (2+4+9+7, in
this case) and then all the left-hand digits. On the computer, however,
when adding several two-byte quantities, we normally add each quantity
to a partial sum; and, in any event, we cannot add all the right-hand bytes
first, .and then all the left-hand bytes. Why not? (Hint: What happens to

the carry?) P

3. In shifting a two-byte quantity M to the left by wo positions, we would
normally use sequence (a) below, and we cannot use sequence (b) below:

(a) ASL M (b) AsL M
ROL M+!1 . ASL M
ASL M ROL M+!1
ROL M+!'1 ROL M+!1

Explain why sequence (b) is wrong.



35. BIT PROCESSING AND PARITY

Just as we can go through all the bytes in an array, using a loop, so we can go
through all the bits in one byte, also using a loop We can do this either from
left to right or from nght to left.

The commonest way is to use a shift, and then test the carry flag. Each time
we shift, a new bit from the byte is shifted into the carry flag to be tested. We
do this eight times.

As an example, suppose we want to count the number of one-bits in the A
register (that is, the number of bits that are equal to 1). We can do this from left
to right by

LDX #18 ;  LOOP COUNT IS 8

LDY #!0 ; BIT COUNT IS ZERO

CB ASL ;  SHIFT A BIT INTO THE CARRY
BCC CB1 ;IS IT ZERO

INY IF NOT, INCREASE THE BIT COUNT
CB1 DEX DECREASE THE LOOP COUNT
BNE CB IF NOT'ZERO, GO BACK

Or we can do it from right to left; all we have to do is to substitute LSR for ASL
in the program above.

The parity of a byte is one (or odd) if the byte has an odd number of one-bits.
Otherwise, the parity is zero (or even). We saw in section 3 that an odd binary
number ends with 1, while an even binary number ends with zero. It therefore
follows that the parity (zero or one) is the rightmost bit of the count, as we have
calculated it above. Thus we can test the parity of the A register by the program
above, followed by the instructions

TYA ;  LOAD A WITH BIT COUNT
LSR ;  CHECK ITS RIGHTIMOST BIT
BCS ODDP ;  IF EQUAL TO 1, ODD PARITY

or the like. We shall take up the major use of parity in section 90.

As another example, suppose we wanted to convert the byte Q into output
form—that is, a string of eight bytes, each of which is either (the character
code for) zero or one, thatis, ““0’’ or *‘1”’. If we output each byte using COUT,
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as we form it, the bytes must come out from left to right, which means that a
left shift is to be used. We might do this by

' LDA Q KEEP Q@ IN A TEMPORARY
STA TEMP CELL TO BE SHIFTED
LDX %18 LOOP COUNT IS 8

OCONV ASL TEMP ;  GET THE NEXT BIT
LDA #no" ; ASSUME IT IS ZERO
BCC OCONV1 ;IS IT REALLY ZERO

LDA #n1" IF NOT, SET IT TO 1
OCONV1 JSR  COUT DISPLAY "0" OR "1"

DEX DECREMENT THE LOOP COUNT

BNE OCONV IF NOT ZERO, GO BACK

We can also use bit processing to construct a byte out of eight bits. This is
done by putting each bit into the carry flag and then shifting it into the byte,
using a rotate (ROL or ROR). For example, suppose we had an eight-byre array
called BITS, and each byte is either *‘0’’ or “‘1”’. (Note that the rightmost bit of
each byte is 0 or 1, depending on whether the byte is “‘0”* or ““1”".) We can
convert these bytes into the single byte Q which they represent, by the follow-
ing program: '~

LDX #!0 START LOOP COUNT AT ZERO
CBYTE LDA  BITS,X LOOK AT CURRENT CHARACTER
LSR RIGHTMOST BIT TO CARRY

ROL Q ) ;  ROTATE THIS BIT INTO Q

INX INCREASE THE LOOP COUNT
CPX #!8 ~COMPARE IT WITH MAXIMUM
BNE CBYTE IF UNEQUAL, GO BACK

;
Bit processing is especially helpful in general multiplication and general divi-
sion, which we shall take up in sections 38—40.

The second program of this section uses a trick which very often saves an
instruction. We have to load the A register with either *“0”” or ““1”’, depending

on the carry flag Af we test the carry flag first, we need four instructions:

BCS OCONV1 ; IS THE CARRY CLEAR OR SET
LDA #*10" ;  CLEAR, SO LOAD "O"

JMP OCONVZ ;  AND JUMP AHEAD

OCONV1 LDA #n1n ;  SET, SO LOAD "1"

OCONV2  (next instruction)

We could save one byte by changing JMP to BCC, since the carry must be clear
(that trick was mentioned near the end of section 27); but the second program of
this section does this even better, avoiding the jump entirely: load ‘0" first;
then test the carry; and, finally, load ‘1’ if the carry is set. Note that COUT
must be defined in this program (by COUT EQU $FDED) as usual.
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EXERCISES

*1.

*3.

Consider the following suggested improvement to the first program of this
section:

LDY #!0 INITIALIZE THE COUNT

ASL ;  LEFTMOST BIT OF A TO CARRY
CB BCC CB1 ;IS THIS BIT A ONE

INY ; IF SO, INCREASE THE COUNT
CB1 ASL ;  MOVE TO NEXT BIT

BNE CB ;  IF NO MGRE BITS, DONE

This takes advantage of the fact that ASL sets the zero status flag. If the
rightmost k bits in the A register are zero, then the last k times through the
loop are saved, because the BNE does not branch. However, there is a bug
in the above program. Find it. (Hint: Try $CO, $80, and zero as initial
contents of the A register.)

In the second program of this section, we have used the three instructions

LDA #"0”
BCC  OCONV1
ILDA  #"1"

in place of four instructions, as discussed in the text. This may be further
improved; we may replace the three-instructions above by fwo instruc-
tions, of which the first loads the A register with a constant, and the sec-
ond is ROL. What is the constant (in binary), and why does this work?

Rewrite the third program of this section by decreasing the X register
(using DEX) rather than increasing it (using INX). Note that LDA BITS,X
must be changed to LDA BITS—!1,X if this is done. Why? Also, what
fundamental change must be made, in this case, in the method of con-
structing the byte? :




36. TABLE LOOKUP AND PROGRAM
TIMING

"There is another way to do the parity calculation of the preceding section,

which is many times faster:

TAX .
LDA  PARITY,X
BNE ODDP

where PARITY is an array of 256 bytes, such that PARITY(J) = 0 if J has even
parity, and PARITY(J) = 1 otherwise, for every possible byte J; that is, for
every J from O through 255.

Such an array is often called a zable (in this case, a 256-position table), and
programs like the one above are 'said to use table lookup. Another example of
table lookup is in dividing an integer Q by 10, producing an integer result (thus,
for example, 85 divided by 10 is not 8%, but rather 8, with a remainder of 5). If
we have a 256-position table DIV10, such that DIV10(J) = J/10 (in this sense)
for every possible byte J, then we can divide Q by 10 in two instructions:

f
IDX Q
LDA DIV10,X

The important disadvantage of table lookup is the amount of space (that is,
the great number of cells in the memory) that it often uses. Especially in a small
computer, 256,cells are quite a lot. Some tables, however, are not that large.
For example, we could also multiply by 10, using a table MULT10, where
MULT10(J) = 10+]J, and here J ranges from zero to 25, because 26%10 (= 260)
is too large to fit into one byte. Thus the table, in this case, is only a 26-position
table.

Since the table lookup programs above save so much time, it is interesting to
calculate exactly how much time they save. On the 6502, the amount of time
taken by each-instruction is given in cycles. These cycle times appear in
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Table 4 in the Appendix.* (On the APPLE, one cycle is approximately one
microsecond, or -one millionth of a second, so that there are approximately
1,000,000 cycles per second, or one megahertz. The actual figure is 1,023,000
cycles per second.’ Other 6502-based systems sometimes operate at 2,000,000
cycles per second, or two megahertz.

From Table 4, we can see that:

(1) TAX takes 2 cycles;

(2) LDA PARITY,X takes 4 cycles (ignore the zero-page addresses of the
form Z or Z,X or Z,Y in Table 4 for the moment—these will be taken
up in section 74); ‘

(3) BNE ODDP takes 2 cycles (unless it actually branches).

This is a total of 8 cycles, to which we add one more if the BNE branches.
(We actually add two more, if the BNE branches to an address having a dif-
ferent high-order byte from that of the address of the BNE itself. Similarly, one
extra cycle must be added for indexed instructions if adding the 8-bit index to the
16-bit address changes the high-order byte of that address. In all our further
discussion, however, we shall ignore these effects, since, if absolutely necessary,
they can always be avoided.)

Now let us compare this with the parity program in section 35 (the first pro-
gram of that section with three extra instructions—TYA, LSR, and BCS
ODDP—as indicated): : ’

(1) First we consider the instructions that are in the loop. There are five of
them (ASL, BCC, INY, DEX, BNE). If neither the BCC nor the BNE
branches, each one of these takes 2 cycles, for a total of 10 cycles.

(2) The BNE actually branches every time except the last. So we have 11
cycles.

(3) If the BCC branches, it takes one more cycle but the INY is not done, so
the total is actually one cycle less, or 10 cycles. Thus, each time through
the loop takes either 10 or 11 cycles.

(4) Since the loop is done eight times, we have a total of from 10%8 to 11x8,
or 80 to 88 cycles.

*Table 4 can also be used to find the number of byres in any instruction. For example, LDA Q s givenin
machine language form, in Table 4, as AD cd ab; so there are three bytes (AD, cd, and ab).

It may be argued that 1,022,700 cycles per second is a more accurate figure; however, this is subject to
a certain amount of drift. The figure of 1,023,000, which we use throughout, is specified in the APPLE
reference manual.
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(5) From this we have to subtract 1, since the BNE does not branch the last time
through the loop. This leaves a total of anywhere from 79 to 87 cycles.

(6) Finally, we add 10 more cycles, two for each of the five instructions
(LDX, LDY, TYA, LSR, BCS) that are outside the loop. The final total
is thus 89 to 97 cycles, plus one more if the BCS branches. Note that a
load instruction (LDA, LDX, or LDY) takes only two cycles if a constant
is being loaded.

The very high speed of computers is one of the great secrets of their power.
Note that the above loop, even though it is done eight times, still takes less than
100 microseconds, which means that it can be done over ten thousand times
every second! Sometimes we say that such a program takes less than one tenth
of a millisecond (one millisecond being 1/1,000 of a second).
~ Always remember , when calculatingthe timing of a program, to take into
account the number of times a loop is executed. If the statements in a loop take a
fotal of n cycles, and the loop is executed k times, then this makes nk cycles
(actually nk — 1, almost always, because the last instruction in the loop is usually a
conditional branch, which takes one fewer cycle the last time through the loop, as
we saw above). In addition, there will always be certain instructions which are not
in any loop, and which are done only once; and we have to add the amount of time
that these take, to obtain the total.

EXERCISES

1. It is a bit tedious to write out the constant definitions for a long table.
THus, for example, 26 uses of BYT are required for the 26-position table
for multiplication by 10 (BYT !0, BYT !10, BYT !20, and so on). Instead
of doing this, we can write a program to store these 26 numbers in the
table MULT10. This can then be done once, before the table is ever used.
Write such an assembly language program. (Use DEX.)

*2.  Deternfine the amount of time (expressed in cycles) taken by the assembly
language program of section 21. Express this as a formula involving the
value of N. Show your work. Also determine the total number of bytes in the
instruction codes for this program.

3. Determine the amount of time, expressed in cycles, taken by the second
assembly language program of section 22. Express this as a formula involv-
ing the value of N. Show your work. Also determine the total number of
bytes in the instruction codes for this program. Note that this program does
the same thing as that of section 21. Is it an improvement?
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We have now had many examples of a program that takes less time, but more
space, than another program that does the same thing. ThlS situation is called a
space-time tradeoff. Sometimes space is more 1mportant than time; other times
it is less important. How do we decide, in any given case” There are many cri-
teria we should consider:

(1) How much space, and how much time, is involved. If one program takes
twice the space of another, but only one-tenth as much time, then time
may be more important. If it takes twice the time, but only one-tenth the
space, then space may be more important.

(2) How often the program is done. If it is inside a loop, or a subroutine, then
any time which is saved is multiplied by the number of times the loop is
done, or the subroutine is called. This effect is multiplied further if the
loop, or the subroutine, is itself inside a loop, or inside a subroutine.
(3) How much total space is available. There are APPLE computers with
fewer than the total 65,536 bytes; there are microcomputer systems with
a very small number of bytes. In such a situation, space becomes critical;
you should probably save space whenever you can.

Whether your program is interacting with other devices which.may have
their own timing requirements. Such programs are called real-time pro-
grams; sometimes (although not always) they must be written with speed,
first and foremost, in mind.

Whether you are paying for computer time. On a large computer, you
often pay by the second. It is thus very important to save time. On a
microcomputer, time is usually so cheap as to be almost free. Therefore,
normally you will want to save space, rather than saving time, when
working with a microcomputer.

As another example of space-time tradeoff, consider the following alternative
way of dividing Q by 10:

IDA Q ; SET A =Q AND COUNT (NO. OF TIMES
LDX #$FF ; THAT 10 IS SUBTRACTED) = —1
SEC ;  SET CARRY FOR SUBTRACTION
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DTEN INX ; INCREASE THE COUNT AND SUBTRACT
SBC #!10 ; 10 —— IF CARRY SET (RESULT
, BCS DTEN ; STILL POSITIVE), REPEAT
' TXA ;  COUNT (A/10) TO A-REGISTER

This program takes 12 bytes of memory, as opposed to 262 (256 + 6) for the
program given in the preceding section to divide Q by 10. It takes anywhere from
16 to 191 cycles (average, 1032 cycles), as opposed to 8 cycles. So it is almost 13
times slower, but over 21 times shorter, than the other division program.

Actually, all of these figures are imprecise. The TXA in the above program is
often not used; instead, X is stored directly, using STX. More importantly, the
average of 103'2 cycles, given above, assumes that we are dividing randomly
chosen numbers. It usually happens, in a program, that small numbers are divided
much more often than larger ones. This pattern of usage of the program would
speed it up considerably. Imprecision of this kind occurs much more often than
not; for this reason, timing ealculations are rather uncommon in practical pro-
gramming, although they are of great theoretical interest.

Sometimes, of course, what appears to be a tradeoff is not a tradeoff at all;
one program is both shorter and faster than another equivalent program. For
example, the program at the end of section 22 is both shorter and faster than the
equivalent program at the end of section 21.

There is a third quantity which trades off with both space and time, namely
programmer time. A program which takes a long time to write and a long time
to debug can be very costly, even if it takes less computer time and less space in
memory than an alternative. For this reason it is very common to write simple,
easﬂy understood, but relatively slow programs (the slang expression for these

“‘quick and dirty”> programs). If a program will be run only once, or only a
few times, or will be modified every few times it is run, the quick and dirty
method is almost always the best.

EXERCISES

*1.  Suppose that there is a BASIC program which runs one hundred times fas-
ter on one computer than it does on another. Are there any conditions
under which the second computer is actually preferable to the first, for
running this program?

2. Compare the program

TAX
LDA  MULT10,X

(where MULT10 is as specified in section 36) with the first program of

. ]
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section 33, which does the same thing. How much slower, and how much
shorter, is one of these programs, compared to the other? Show your
work. Remember to count both data bytes and program (instruction code)
bytes in both cases.

Compare the two programs at the beginning of section 32. Is there a
space-time tradeoff here? Why or why not? (You do not need to be
specific about the number of bytes and cycles.)




38. BINARY MULTIPLICATION AND
DIVISION

Suppose now that we have the BASIC statement K = I*J. How do we do this in
assembly language? On some computers there are instructions, like our ADC
and SBC, which multiply and divide. On such a computer we would use three
instructions: load I, multiply by J, and store in K. The 6502, however, does not
have multiplication or division instructions; we have to use subroutines instead.
These subroutines, unlike RDKEY and COUT, are not provided in the APPLE
monitor, so we have to provide our own. We will learn how to write and use such
subroutinesi in order to do so, we must first see how binary numbers are multiplied
and divided. A

We ‘saw in section 3 that the rules for adding and subtracting numbers of
more than one digit are the same in the binary number system as they are in the
decimal system, with 2 substituted for 10. The same is true of multiplication
and division. For example, here 18173 times 199, in both decimal and binary:

173 10101101
¢ X199 x11000111
1557 10101101
1557 10101101
173 10101101
34427 00000000
0000000
S 00000000
10101101
10101101
1000011001111011

The binary multiplication is longer, but it is -also, theoretically, easier. Note
that in the decimal multiplication we have to multiply 173 by 9, getting 1557.
We never have to do anything like this in binary multiplication; we always mul-
tiply by either 1 or O, which is easy.

122
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Multiplying two 8-bit quantities produces a 16-bit quantity. We can write a
program to multiply the A register by the X register, for example; but the
answer will not fit into one register. We can put the answer in the A and X
registers together, with the upper half in A and the lower half in X.

Sometimes the answer will be an 8-bit quantity. In the case above, this would
be the X register, and the A register would be zero. We could also write a
simpler multiplication program which assumes that (and does not work unless)
the answer is an 8-bit. quantity.

Similarly, here is 34427 divided by 173, in both decimal and binary:

11000111
173 34427 10101101 |1000011001111011
173 10101101
1712 10111111
1557 10101101
1557 100101110
1557 10101101
0 100000011
10101101
10101101
10101101
0

The division, like the multiplication, is longer but theoretically easier. In the
decimal division we have to multiply 173 by 9, just as in the decimal multipli-
cation. In the binary division, we are always subtracting the same quantity, in
this case 10101101.

Division is the inverse of multiplication; so we start with a 16-bit quantity
and divide by an 8-bit quantity. In a program, we might start with a quantity in
the A and X registers together, with the upper half in A and the lower half in X,
and divide this by the quantity in the Y register.

The result of this division might not fit into one-8-bit register. (In particular,
dividing by 1 produces the original 16-bit number.) But it is customary for the
answer to be 8 bits long in this case; if the actual answer is longer than this, the
division program goes to an error exit. (The same thing happens if we try to divide
by zero, which is an undefined operation.)

A simple and clever test may be used for both overflow and division by zero.
If we are dividing 256+A+X by Y (note that the 16-bit quantity with upper half
in A and lower half in X has value 256%*A+X), with the result Q = 256 (the
overflow case), then 256%A+X = QxY = 256xY, or A+(X/256) = Y; since A
and Y are integers and X < 256 (so that X/256 < 1), this implies A = Y. But if
Y is zero, then also A = Y—so that the single test that A <Y is sufficient to insure
that there will be neither overflow nor division by zero.
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There is an 8-bit remainder, as well as an 8-bit quotient. At the end of the
division program, we may leave the quotient in the X register, and the
remainder in the A register.

The rules for multiplying and dividing hexadecimal numbers are the same as
those for binary numbers, with 16 substituted for 2. The interested reader may
work out some examples of this; but we will not need to concern ourselves with
it. Indeed, it may be argued that the easiest way to multiply or divide hexadeci-
mal numbers is to convert them to binary, multiply or divide them that way, and
then convert the results back to hexadecimal.

EXERCISES

1. Do the following multiplications in binary, multiplying two four-bit
numbers: : :

@9 X9
#(b) 3 X 10 (Note: Do 3 X 10—not 10 X 3)
©15%x15 |

2. Dothe following divisions in binary:
*(a) 111]1000110

*(b) 10101000000
*(c) 1101]}1001000

3. Ineach of the divisions of Exercise 2 above, what are the decimal numbers
that are being divided, and what are the quotient and remainder as decimal
numbers?




39. A MULTIPLICATION SUBROUTINE

Figure 13 shows a subroutine to multiply two 8-bit quantities. You can include this
subroutine as part of your program and call it with- JSR MULT (just as you would
call JSR COUT to display a character, for example).

Before you call MULT, you put the quantities to be multiplied in the A- and X—
registers; MULT will multiply what it finds in A and X and produce a 16-bit answer,
which it leaves in A and X (lefthalf in A, right half in X). After the JSR MULT you
may, for example, store A and X in the two bytes of a 16-bit variable. Of course, if
you know that your answer will fit into eight bits, then it will be left in the X
register, and zero will be left in the A register. All quantities to be multiplied are
considered as unsigned numbers. (In section 88, we will see how to multiply
signed quantities.)

For example, to set M3 = M1+#M2, where M1, M2, and M3 are all 8-bit
unsigned quantities, we could write

ILDA M1 ;  SET UP QUANTITIES TO
IDX M2 ; BE MULTIPLIED
JSR  MULT ;  NOW MULTIPLY THEM

STX M3 AND PUT THE RESULT IN M3

If M3 were a 16-bit quantity, kept with bytes reversed, we would put STA
M3+!1 on the end of this sequence, to store the left half (STX M3 already
stores the right half).

We say that MULT is entered with I and J in the A and X registers, and that
MULT exits with I*J, as a 16-bit quantity, in the A and X registers. This is a very
common technique used with assembly language subroutines: if they act on data,
this data is often entered in the registers, and, if they produce a result, the result is
often left in the registers. You can thus call a subroutine many times, loading dif-
ferent quantities into the registers each time, and storing the result in a different
place each time. (In the same way, COUT is entered with the character to be out-
put in the A register; RDKEY exits with the input character in the A register.)

This multiplication program, and the division program of the next section, are
presented as examples of how efficiently programs can be written in assembly
language. They are not presented as examples of how efficient your own pro-
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; MULTIPLICATION SUBROUTINE — — K = I*J (UNSIGNED)
; KIS 16 BITS LONG —— I AND J ARE 8 BITS LONG
; ENTER WITH I AND J IN REGISTERS A AND X
LINE ; EXITS WITH K IN REGISTERS A AND X
NUMBER ; (LEFT HALF OF K IN A, RIGHT HALF OF K IN X)
1 MULT STX  MDATA1l ; STORE I AND J, WITH I
2 LSR ;  ALREADY SHIFTED RIGHT AND
3 STA  MDATA2 ;  RIGHIMOST BIT IN CARRY
4 LDX #18 ; LOOP COUNT
5 LDA #!0 ; SUM' STARTS OUT AT ZERO
6 MULT1 BCC MULTZ2 ; IS THIS BINARY DIGIT ZERO
7 CLC ; NO, CLEAR CARRY AND
8 ADC MDATA1 ; ADD J
9 MULT2 ROR ; INDENT THE SUM (DOUBLE SHIFT)
10 ROR  MDATA2 ;- NEXT BINARY DIGIT TO CARRY
11 DEX ; REPEAT THIS 8 TIMES FOR
12 - BNE MULT1 =~ ; &8 BITS IN I AND J
13 ° LDX  MDATA2 ; RIGHT HALF OF ANSWER SHIFTED
14 RTS ; INTO MDATAZ2. LOAD IT AND EXIT
15 MDATA1 DFS 11 ; DATA (1) ’

16 MDATA2 DFS " ; DATA (J)

Figure 13. A Multiplication Program.

grams ought to be at this stage. Each of them was the result of a long process of
refinement—far more than one ought to spend on any but the most commonly
used subroutines. "

We will now,explain how MULT works. We start MULT by giving some gen-
eral comments, each of which is on a line that szarts with a semicolon (see sec-
tion 18). These tell what the subroutine does, what it is entered with, and what it
exits with, in a precise way. Be sure to do this for any subroutine you write.

We are adding eight quantities, as in the preceding section. This is done in a
loop with a counter in the X register, originally set to 8 (line 4). It is decre-
mented at the end ofthe loop (line 11) and tested for zero (line 12).

The addition takes place in a double register, with the upper half in A and the
lower half in MDATAZ2. The left-hand 7+% bits of this register are used when
we are adding the kth quantity (when 9—k is in the X register). The rest of
MDATAZ2, with one intervening bit (which is always zero), holds the quantity
which was originally in the A register. We are multiplying by this quantity and
looking at the bits of it from right to left. Every time one of these is a one-bit,
we add the original contents of X. Otherwise, we do not need to add. This is
because X*1 = X and X+0 = 0.

Using MDATAZ2 for two different purposes works because both quantities are
being shifted to the right, with one being shifted in, and the other being shifted
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out. At the end, the second quantity is shifted entirely out and the 16-bit register
(that is, A and MDATA?2) holds the answer. Then we load X with MDATA2
(line 13), so that A and X hold the answer, as we specified.

The program starts by setting the original values of MDATAI (line 1) and
MDATA? and the carry flag (lines 2 and 3). Note that, when we get to MULTI,
the carry flag already contains the rightmost bit of the A register; this bit will be
tested at MULT1. Also we set the sum to zero (line 5) so that we can add eight
quantities to it. _ '

At MULT1, we test the current bit of the A register. If this is 1, we add J to
the sum, clearing the carry first (lines 7 and 8): This addition may or may not
produce carry. At MULT2, we shift the partial sum to the right so that the next
term can be added. Normally this would be done by LSR and ROR (see sec-
tion 34); but we replace the LSR by another ROR so as to shift in the carry from
the addition, as noted above. (If the branch at MULT1 was taken, the carry will
be clear, so that zero is shifted in.) This double shift (lines 9 and 10), at the
same time, puts the next bit of MDATA?2 (counting from right to left) into the
carry flag, to be tested the next time through the loop (at line 6).

This is a subroutine, and thus has a return instruction, RTS (Return from
Subroutine). This is like RETURN in BASIC or FORTRAN. (In section 60, we
will see how RTS actually works.) Note that RTS is followed immediately by
the data; we will not use a data section with a subroutine in assembly language.

EXERCISES

1. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements (assuming that MULT is as
specified in Figure 13):

*(a) LDA P
CLC
ADC  Q
DX R
DEX
JSR  MULT
STX S

(b) LDA © #110
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*c) DX J
' TXA
JSR MULT
TXA
JSR MULT
STX K

2. Give an assembly language form of each of the following BASIC state-
ments (omit ORG, END, and DFS). Assume that the array T starts at (D),
and that all variables correspond to 8-bit quantities.

(a) @=R*s—1
*(b) T (J) =K* (J—5)
(©) w=T (1*+J)

3. (a) How many bytes are used by the program of Figure 13? Show your

. work by adding up the number of bytes in each instruction (use Table 4

- in the Appendix)* and one for each data byte. :
~ *(b) How many cycles (maximum and minimum) are used by the loop of
the program of Figure 13? Show your work by adding up the number
- of ¢ycles in each of the two cases (when the BCC branches, and when
it does not), multiplying by the number of times the loop is done, and
subtracting 1 since the BNE takes one fewer cycle when it does not
branch. Use Table 4 in the Appendix. Remember that the ADC is done
only when the BCC does not branch.

*(c) Obtain the total number of cycles (maximum and minimum) used by
the program of Figure 13 by adding the cycle times of the instructions
outside the loop to the result of part (b) above. Show your work as in
part (b). :

*When using Table 4, remember not to use the Z options. For example, under STX, you will find
both STX Q, which is given as a three-byte instruction (8E cd ab), and STX Z, which is given as a
two-byte instruction (86 ef). Do not use the STX Z, or any other instruction with a Z in it, in Table 4,
until you have come to section 74, where you will learn what the Z options are for.

yl _



40. A DIVISION SUBROUTINE

Figure 14 shows a subroutine to divide a 16-bit quantity by an 8-bit quantity;
both quantities are unsigned. To use this subroutine, first put the 8-bit quantity
in the Y register and the 16-bit quantity in the A and X registers, with the upper
half in A and the lower half in X. (If you are dividing one 8-bit quantity by
another, put the first 8-bit quantity in X and put zero in A, as usual.) Now call
DIV (JSR DIV); this will divide the first quantity by the second, producing an
answer (the quotient), which it leaves in the X-registet, and a remainder, which
it leaves in the A register. After the JSR DIV you will normally store X and
ignore what is in the A register, since, when we divide, we normally don’t care
about the remainder. However, the remainder, often called MOD(L, J) (where
we are dividing 1 by 1), is there if you need it for some reason.

For example, to set M3 = M1/M2, where M1, M2, and M3 are all eight-bit
unsigned quantities, we could write

LDA #!0 ; SET UP

IDX M1 ;  QUANTITIES TO

LDY M2 ;  BE DIVIDED

JSR DIV  ; NOW DIVIDE THEM

STX M3 ; AND PUT THE QUOTIENT IN M3

If M1 were a 16-bit quantity, kept with bytes reversed, we would replace
LDA #!0 by LDA M1+!1 (LDX M1 remains the same). ‘

This division program exits with the carry set to indicate an error. There are
two sources of error: we might be trying to divide by zero; or the answer, after
division, might be too large to fit into one byte. In either of these cases, the
carry will be set when DIV exits; otherwise, the carry will be clear. Thus JSR
DIV may be followed immediately by BCS ERROR (or the like) to test this.
DIV also exits with the quotient in X and the remainder in A, and is entered
with the dividend in A and X and the divisor in Y, using the terminology of the
preceding section. :

We will now explain how DIV works. First, as before, we give comments
(starting with semicolons) that explain what DIV does, and its entry and exit
conditions. We start by storing the divisor (line 2) and the right half of the dividend
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; DIVISION SUBROUTINE —— K = I/J (UNSIGNED)

: ; I IS 16 BITS LONG —— J AND K ARE 8 BITS LONG
:;» ENTER WITH J IN Y, AND T IN A AND X

' ; (LEFT HALF IN A, RIGHT HALF IN X)
; EXITS WITH K IN X, AND REMAINDER IN A
LINE ; EXITS WITH CARRY = 0 —— NORMAL, 1 —— ERROR
NUMBER ; (DIVISION BY ZERO, OR ANSWER TOO LARGE)

DIV STX DDATA2 ; RIGHT HALF OF DIVIDEND

Figure 14. A Division Program.

(line 1), and setting up the loop count (line 3) just as we did in MULT. (The loop in

this program ends, just as in MULT, with DEX and BNE, which are at lines 15 and

16, in this case.) Now we test to see whether the upper half of our 16-bit quantity is

less than Y. If not, we have one of our two error cases: either Y = 0, or the

answer will be too large (as explained in section 38). We return from the subroutine

(line 19) with the carry set (because we branched on carry set). Otherwise, we ‘

continue, and, as we shall see, the carry will be clear at the end. |
The subtraction takes place in a double register, with the upper half in A and 1

the lower half in DDATA?2. The left-hand 17 —k bits of this register are used |

when we are subtracting for the kth time, to produce the kth bit of the answer i

1
2 STY DDATA1 ; DIVISOR
3 IDX #!8 ; LOOP COUNT
4 CMP  DDATAl ; IS ANSWER TOO BIG, OR DIV BY 0
© 5 BCS DIV4 ; —— YES, EXIT WITH CARRY SET
6 DIVl ROL  DDATA2 ; SHIFT DOUBLE REGISTER (INDENT
7 ROL ;  AND SHIFT IN AN ANSWER BIT)
8 BCC DIV2 ; IS 17-BIT RESULT OF THE SHIFT
.9 SBC  DDATAL < — YES, ALWAYS SUBTRACT
10 ~ SEC ) ; BUT ANSWER BIT IS A 1
11. BCS .DIV3 ; (THIS ALWAYS BRANCHES)
12 DIV2 CMP  DDATA1 ; WILL SUBTRACTION PRODUCE A
; 13 BCC  DIV3 ; NEGATIVE RESULT (ANS BIT 0)
: 14 ! SBC DDATA1 ; —— NO, SUBTRACT (ANS BIT 1)
15 DIV3. - DEX ; IF NOT DONE, REPEAT WITH NEW
16 . o BNE DIVl i ANSWER BIT IN CARRY FLAG
17 . ROL  DDATA2, ; SHIFT IN LAST ANSWER BIT AND
18 LDX DDATA2 ; LOAD X WITH ANSWER (CARRY 0)
19 DIV4 RTS ; QUIT (CARRY 1 = ERROR)
| - 20 DDATA1 DFS !1 ; DIVISOR
| 21 DDATA2 DFS !1 RIGHT HALF OF DIVIDEND; ANSWER

(when 9—k is in the X register). The rest of DDATA?2, with one intervening bit
(which is always zero), holds the answer, which is being shifted into DDATA2
from the right. Using DDATA? for two different purposes in this way works
because both quantities are being shifted to the left.

s
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The first time we get to DIV, the carry will be clear (otherwise we would
have branched to DIV4). So we rotate in the intervening zero bit. The double
shift here operates on the double register mentioned above.

If the double shift produces carry, we have a 17-bit number, with the carry
flag being the highest order bit. In this case we always subtract (line 9), and,
since we do, the next answer bit is always 1. So we branch (line 11) to the end
of the loop with the carry set to 1 (line 10). Note that the BCS always branches
in this case. ,

If the double shift does not produce carry, we have to test to see whether sub-
traction is to be performed (line 12). If not, then we branch to the end of the loop
(line 13) with the carry set to 0. If so, then the carry is set (otherwise we would
take the branch) and so we can subtract without an SEC; this subtraction itself
leaves the carry set to 1 (because otherwise the answer would be negative).

The crucial point is that there are three ways to get to DIV3 (through the
branch at line 11, through the branch at line 13, and through line 14); and, in
each case, the next bit of the answer is in the carry flag.

Now we terminate the loop in the usual way. If we go back to DIV1, then the
first ROL will rotate the next bit of the answer into DDATA?2. (This ROL and
the next one thus replace the usual sequence for a double shift, namely ASL and
ROL.) If we do not go back, the last bit of the answer is rotated (line 17) into
DDATA?2. This also rotates the intervening zero-bit into the carry flag (so that
the carry is clear on normal exit); and the answer is loaded into X (line 18).
The remainder is now in the A register since it is nothing more than the result of
the last subtraction. ' :

EXERCISES

1. Give a BASIC statement which corresponds to each of the following
sequences of assembly language statements (assuming that MULT is as
specified in Figure 13, and DIV is as specified in Figure 14:

*(a) DA #!0
DX Q
IDY R
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A Division Subroutine
*(©) IDA I
SEC
SBC J
, LDX #!10
JSR  MULT
LDY K
JSR DIV
STX L
Give an assembly language form of each of the following BASIC state-

ments (omit ORG, END, and DFS), assuming that all variables correspond
to 8-bit quantities:

*(@) I = (J+K) /L
(b) D = MOD (N, 10) +C
*(c) W = (L/M) /N

Do Exercise 3 (all three parts) of the preceding section for-the program of
Figure 14. In part (b), there are three cases to consider: when the first BCC
does not branch; when the first BCC branches but the second does not; and
when both BCCs branch. Be sure that in each of these three cases you count
only the instructions that are actually executed in that case.



41. INPUT AND OUTPUT
CONVERSION

We have learned how to perform character input (with RDKEY), character out-
put (with COUT), line input (with GETLNZ), and line output (with a loop
involving a call to COUT). In most programs, however—with the exception of
those dealing with input and output as character strings only-—we must also call
subroutines which perform conversion of integers and other types of data.*

Every integer has an internal form and an external form. For example, con-
sider the integer 209. It has the following forms:

External Form Internal Form
Hexadecimal B2 B0 B9 D1
Binary 10110010 10110000 10111001 11010001
Character code €209 “Q”

The external form is the input-output form. That is, when you type 209, the
characters 2, 0, and 9, in character code form (B2, B0, and B9, in hexadeci-
mal), come into the computer. When your program displays 209 on the screen,
it must again do so by outputting each of these three characters in turn.

The internal form is what is used in calculations, such as addition and subtrac-
tion. In this case 11010001 is the binary internal form, because 209 (decimal) is
11010001 (binary). In hexadecimal, this becomes D1. It also happens to be the
character code for the letter Q, but that is irrelevant to this discussion.

If we want to write a program which lets us type ‘“209+170”’ and then
displays ‘379 (the sum of 209 and 170), for example, our program will nor-
mally do the following:

(1) Input the characters ‘209’ and ‘170" (in external form).

2 Convert them from external to internal form (thisis called input conversion).

*In BASIC, this is also done, although the subroutines are part of the BASIC system and are called
automatically when needed. -
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(3) Add them in internal form.
(4) Convert the result from internal form back to external form (this is called

output conversion).
(5) Output the result (that is, ‘‘379°").

Conversion to internal form is often called conversion to binary, and internal
form is widely known as binary form. This is a misnomer, as the above tables
show; ail numbers in a computer are binary numbers. The internal form, how-
ever, expressed in binary, does represent the ordinary binary representation of a
decimal number as given in section 2.

In sections 62 and 63 there are given two conversion routines, DECI (Deci-
mal Input) and DECO (Decimal Output). At this point we will discuss only how
these routines are used, since they contain instructions that we will study at a
later time.*

The routine DECI is entered with the standard input buffer index in the X
registér. That is, if we have sét INBUF EQU $0200 as usual, then X has to be set,
before the JSR DECI, to a value (normally zero) which is such that LDA INBUE, X
loads the first character of the input string. This allows DECI to be used when
several numbers are given on one input line; normally, if we are reading a number
starting at the beginning of the line, we would enter DECI with X set to zero.

When DECT exits, the converted decimal number will be in the A and X
registers, with the upper half in A and the lower half in X; and the carry will be
clear, unless the given number was too large (that is, larger than 65535). In that
case the carry will be set (and the contents of A and X are meaningless).

The routine DECO is entered with the A and X registers containing a 16-bit
number, as on exit from DECI. This number is converted to decimal and
displayed, usmg COUT. An example of the use of DECI and DECO is given in
Figure 15. Note that Figure 15 uses DECOZ, rather than DECO; this is an alterna-
tive, which starts the output on a new line (DECO continues on the current line).

There are two ways to make sure that the LISA system knows where the
subroutines are. One is to include all the instructions of the subroutines with the
program that calls them and assemble these all together. The other is to assemble
them at different places; for example, DECI might be assembled at $0900 (by
inserting ORG $0900 as the first statement of DECI) and similarly DECO at
$0A00. If you do this, then DECI EQU $0900 and DECOZ EQU $0A00 should be
included with the calling program, to tell it where DECI and DECOZ are.” Make
sure, if you do this, that the subroutines are not so close together that they overlap.

*Do not try to use these instructions (particularly PHA and PLA) in your own programs until you have
studied them in detail; they must be used with care.

"Looking at Figure 22, section 63, we see that DECO starts at the eighth byte of this program because
the PHA, JSR, and JMP take up a total of 7 bytes (see Table 4 in the Appendix). Thus, if DECOZ is
assembled at $0A00, DECO will be at $0A07, and DECO EQU $0A07 should be included with any
program in which JSR DECO is contained.
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THIS PROGRAM .READS A NUMBER K AND DISPLAYS 2K |

’

GETLNZ EQU $FD67 ; LOCATION OF GETLNZ ROUTINE
ORG $0800 ; START OF PROGRAM SECTION !
PROG1  JSR GETLNZ  ; READ A NUMBER !
LDX #10 ; ENTER INPUT CONVERSION WITH X = 0 :
JSR DECI ;  (NUMBER STARTS AT BEGINNING OF LINE) :
BCS PROG1 ; IF TOO LARGE, TRY AGAIN tl
STA IUPPER  ; INPUT CONVERSION EXITS WITH NUMBER o
STX ILOWER  ; IN A AND X — — STORE IT M
ASL ILOWER  ; DOUBLE SHIFT OF ILOWER AND 4|
ROL IUPPER ;  IUPPER (MULTIPLICATION BY 2) Al
LDX ILOWER  ; ENTER OUTPUT CONVERSION WITH NUMBER [
LDA IUPPER  ; TO BE CONVERTED IN A AND X Hl
JSR DECOZ ; CALL OUTPUT CONVERSION i

(here we include either the subroutines DECI and DECO, ‘ i
or else EQU statements which specify where they are)

ORG $C100 . START OF DATA SECTION |
ILOWER DFS 11 . LOWER END.OF 16-BIT NUMBER, I ik
IUPPER  DFS 1 . UPPER END OF I il
END

Figure 15. Using Input and Output Conversion.

An APPLE subroutine which may be used along with output conversion is ‘
PRBL2 (the PRBL stands for ‘print blanks’’), which prints » blanks, where n is ‘; i
entered in the X register. Thus, to print 10 blanks, you do an LDX #!10 fol- i
lowed by JSR PRBL2 (where PRBL2 EQU $F94A defines this subroutine in I
your program). ‘ ‘ I

The subroutines DECI and DECO (and DECOZ) use the registers for their
own purposes, just like RDKEY and GETLNZ (see section 25). After a JSR to
any one of these subroutines, therefore, do not expect Y (for example) to have
the same value it had before the JSR.

EXERCISES

1. What is the output of each of the following sequences of instructions,
assuming that the input is the number 50? 100? 200? (Assume that DECI
and DECOZ are as in this section; DIV is as in section 40; and GETLNZ
is as in section 25.)

*(a) JSR  GETLNZ
LDX #!0 Al
JSR  DECI n

INX
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(b)

#©)

BNE
CLC

JSR

JSR

JSR

Input and Output Conversion

#11
DECOZ

GETLNZ
#!0
DECI
#!0

#1100
DECOZ

GETLNZ
#!0
DECI
#110
DIV
#10
DECOZ

2. Write sequences of instructions to do each of the following. (Assume that
DECI, DECOZ, DIV, and GETLNZ are as in the preceding exercise.)

(a) Read one number, store it in READ and READ+!1 (with bytes

reversed), and display it.

*(b) Display the 8-bit quantity J times 200. (Use MULT.)
(c) Read one line which contains two numbers, one starting in colurhn 1
and the other starting in column 7, and branch to NOTEQ if they are

unequal. (The numbers may range from 0 to 65535.)

/
*3.  What is wrong with the following program to output the numbers 1
through 10 (using DECOZ as in this section)?

#!0

J

J

J
#111
DONE
DECOZ
LOOP

Instruction)



42. COMPLETE PROGRAMS

We are now ready to write a complete program. In the next eight sections, we
will learn how to assemble, debug, and run such a program on the APPLE.
There is no instruction on the 6502 that stops the computer (as there is on
many other computers). A main program on the APPLE customarily ends with
an instruction called BRK (‘‘break’’), which jumps to a program called the

monitor, discussed in section 47.*

Here is an example of a complete program; it reads text from the keyboard,
terminated by a control-E, and stops (using BRK) with the A-register containing
the number of times that the word AGE occurs as a separate word in what was

typed:

RDKEY
CTRLE

L1
L2

L3

EQU
EQU
ORG
LDA
STA
JMP
JSR
JSR
BCC
LDX
JSR
CMP
BNE
DEX
BNE
JSR
JSR
BCC
INC
JMP

$FDOC
$85
$0800
#10

- COUNT

L3

RDR

CAC

L1

#13

RDR
AGE—!1,X
L2

L3
RDR
CAC
L1
COUNT
L3

APPLE SUBROUTINE, RDKEY

CONTROL-E CHARACTER

START OF PROGRAM SECTION

INITIAL VALUE OF COUNT (NO.

OF OCCURRENCES OF “AGE") = 0

SKTP FIRST TEST, FIRST TIME

READ ONE CHARACTER

CHECK FOR ALPHABETIC CHARACTER

IF NOT, LOOK FOR "AGE" NOW
(THREE CHARACTERS IN "AGE")

READ ONE CHARACTER

CHECK NEXT CHARACTER OF "AGE"

IF UNEQUAL, CHECK ALPHABETIC

IF EQUAL, ARE THERE ANY MORE
CHARS. OF "“AGE" — — IF SO, CHECK

READ ONE MORE CHARACTER

IS THIS CHARACTER ALPHABETIC

YES, GO BACK (NOT "AGE")

NO, INCREASE "AGE" COUNT

AND READ NEXT CHARACTER

*You can also terminate a main program by JMP INIT (where INIT EQU $FB2F is specified). This also

jumps to the monitor, but in a cleaner way.
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TEMP DFS !1
COUNT DFS !1
END

TEMPORARY STORAGE FOR X
NO. OF OCCURRENCES OF "AGE"

138 Complete Programs
RDR STX  TEMP ;  READ-CHARACTER SUBROUTINE
JSR RDKEY ; — — SAVE X, GET CHARACTER,
LDX TEMP H RESTORE X AGAIN (SINCE RDKEY
'CMP  #CTRLE : USES X ITSELF) — — IF UNEQUAL
BNE DONE H TO CONTROL-E, THEN RETURN
LDA COUNT ;  CONTROL-E — — LOAD COUNT INTO
BRK ; A-REGISTER AND STOP
CAC CMP FUAN ;  CHECK ALPHABETIC CHARACTER
BCC CAC1 B SUBROUTINE — — IF LESS THAN
CMP #Z+11 ; "A" OR GREATER THAN "Z'",
RTS ; SET CARRY (SUBROUTINE RETURNS
CAC1 SEC ; WITH CARRY CLEAR IF ALPHABETIC
DONE RTS ; CHARACTER, AND SET OTHERWISE)
ORG $0900 ;  START OF DATA SECTION
AGE ASC "EGA" ;  BACKWARD STRING "AGE"

This is an interactive program; you type the input while the program is run-
ning (in contrast with remote job entry systems, mainly on large computers,
which accept your typed input into a file before running your program, which then
reads the file). If the text which you type into the above program is

THE AGENT OF THE MANAGER SAID THAT MY TEEN-AGE SON WAS UNDER
AGE, BUT MY DAUGHTER WAS OF SUFFICIENT AGE TO MANAGE THE STORE

{followed by control-E), the final value in the A-register is 3 (counting the AGE
in TEEN-AGE, UNDER AGE, and SUFFICIENT AGE, but not the AGE in
AGENT, MAthGER, or MANAGE).

When you write a complete program, be sure to check that the following has
been done: '

(1) All necessary EQU statements are given. (In the above program, RDKEY
and CTRLE must be defined with EQU if they are used.)

(2) The prograni has a program section, starting with ORG, and a data sec-
tion, starting with ORG (but see section 45 below).

(3) If you have any subroutines (such as RDR and CAC above), they end with
RTS (note that CAC ends with RTS in two different places). If you have a
main program, it ends with BRK (note that the BRK above is in the middle
of the subroutine RDR, but it is still the end of the main program).

(4) All variables are declared. This means that every variable J in the pro-
gram must have J DFS n or ] BYT n or J ASC message or some other
such declaration (see also sections 63 and 73) in the data section of the
program. (Thus, in the program above, AGE, TEMP, and COUNT must
be declared since they appear in the program section.)
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(5) Subroutines save and restore registers where necessary. (The loop which
starts at L3 involves the X register, but it also contains a call to RDR. As
we learned in section 25, RDKEY uses X for its own purposes. There-
fore, RDR saves X in a temporary location, here called TEMP, and then
restores X after calling RDKEY. The result is that the value in the X
register is always the same, after calling RDR, as it was beforehand. This
property of calls to RDR is clearly needed in the loop starting at 3. Also
see section 57 for a more general discussion of saving and restoring.)

(6) There is an END, which is the last statement in the program; and there is
only one END. ‘

EXERCISES

1. Give three reasons why the following program is not a complete program,
as described in this section:

ORG $0800
DUMBE ILDA J

SEC

SBC I

JSR  COUT

ORG  $0900
I DF'S 11
J DF'S 1

*2.  Give three reasons why the following program is not a complete program,
as described in this section:

ORG $0800
BAD LDX I

JSR  WORSE

STX I

BRK

END
WORSE INX

END

3. Expand the following program into a complete program (with a data sec-
tion starting at address 0B0O):

ORG  $0A00
KFIRST JSR  GETLNZ
LDA INBUF

STA K




43. HAND ASSEMBLY

Debugging an assembly language program- requires a thorough knowledge of
the relation between assembly language and machine language. The surest way
to get this knowledge is to hand-assemble a few programs—that is, to translate
them from assembly language to machine language by hand.

We have already learned, in sections 10 and 27, all but one of the instruction
formats of the 6502. These are:

(1y One-byte instructions* (operation code only), such as INX.

(2) Immediate data instructions, that is, those which operate on constants
(such as LDA #$64)—second byte is the constant. (The first byte of
every instruction is always the operation code.)

(3) Instructions containing 16-bit addresses, such as STX K—second and
third bytes are the address (with bytes reversed).

(4) Conditional branches, such as BNE L.7—second byte is the signed rela-
tive address (this, plus two, plus the address of the conditional branch,
gives the address to branch to).

(5) Instructions containing 8-bit addresses, such as LDA $33—second byte
is the 8-bit address. (This is the one we have to take up later, in sec-
tion 74.)

All of these, except the first and third, are two bytes long. The actual opera-
tion codes, in all cases, are given in Table4 in the Appendix. (Note that
Table 4 uses the letter Q for instructions of type (3) above, and the letter Z for
those of type (5). )

Now consider a sample program, such as that of Figure 16(a). (This program
does not have separate program and data sections; we will take up this subject
further in section 45.) We will show how to hand-assemble it. The steps are as
follows:

(1) Draw the lines of Figure 16(b). The left-hand column will eventually
contain addresses, while the other columns will contain data (as in Fig-
ure 16(e)). All the digits, in all the columns, are always in hexadecimal.
The important point here is to leave exactly the right amount of space for
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, ORG  $0900 W
T DFS 1100 e i
W  BYT !100 o
S1 LDA #"" o

IDX W -
s2 o T'1,x
BNE S3 L
DEX L '
. BNE S2 -
$3 (next instruction) ____
(a) ()
0900 0900
0964 __ 0964 64
0965 __ __ 0965 A9 AQ
0967 __ __ __ 0967 AE __ __
0g6A __ __ __ 096A DD __ __
096D __ __ 096D DO __
096F __ 096F CA
0970 __ __ 0970 DO __
0972 0972
(© (d)
ORG  $0900
T DFS 1100 0900
W  BYT !100 0964 64
51 LDA #"" 0965 A9 AQ
DX W 0967 AE 64 09
$2 CMP T-!1,X 096A DD FF 08
BNE  s3 096D DO 03 ‘
DEX 096F CA "
BNE s2 0970 DO F8

$3 (next instruction) 0972
(e)

Figure 16. Assembling a Program By Hand.
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Hand Assembly

each instruction and piece of data (one space for each byte). Note that

there are:

(a) two spaces for LDA #" " (it involves a constant);

(b) three spaces for LDX W (W has a 16-bit address);

(c) three spaces for CMP T—!1,X (T has a 16-bit address);

(d) wo spaces for each BNE (conditional branch);

(e) one space for DEX (operation code only);

() one space for W BYT 1100 (W is a single byte);

(2) and no spaces for T (since we do not know what is in T).

Now fill in the first column, as in Figure 16(c). Note that:

(a) The first number is determined by the ORG statement.

(b) Every number, plus the number of spaces opposite it, gives the next
number. (Thus 0965+2 gives 0967 because there are two spaces
opposite 0965.) Note that for a DFS we must add the number of

spaces involved (100 decimal, in this case, or hexadecimal 64).*
Also do not forget that 0967+3 = 096A, not 0970.

Next, fill in all the spaces except those corresponding to addresses, as in

Fiéure 16(d). The spaces filled in will include the following:

(a) Operdtion codes, obtained from Table 4 in the Appendix.
Remember to check the addressing mode when looking up the opera-
tion codes; for example, CMP T—!1,X has the operation code DD
(not CD) because the address is indexed by X (and if it were indexed
by Y, the operation code would be D9). Also remember not to use
the Z options in Table 4 (such as CMP Z,X with operation code
D5—use CMP Q,X instead) until we study zero-page instructions in

rsection 74.

(b) Constants (immediate data) such as AQ (here the character code for
i 1 or the blank, obtained from Table 10 in the Appendix.)

(¢) Data declared by constant declarations, such as W BYT !100, which
contains 100 (decimal) or 64 (hexadecimal). Remember that all
numbers inmachine language are always written out in hexadecimal.

Finally, ill in the addresses, as in Figure 16(e). In doing so, you will be
referring to the addresses of labels that you have already calculated in the
first column. (In this case the address of S1 is 0965, for example,
because the assembly language statement with label S1 corresponds to
the machine language statement with address 0965.) The addresses
include:

(a) Standard 16-bit addresses, such as that of W. Always remember to

reverse the bytes; this is 64 09 here, not 09 64.

*In LISA 1.5, there may be a bug in the listings of this first column. The bug does not affect the
resulting machine language program, only the listings; and it is corrected in LISA 2.5.
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(b) Relative addresses, calculated as in section 27. Here the first relative
address is z where 096D+2+z = 0972, so that z is 3. The second
relative address is z where 0970+ 2 +z=096A, so that z is —8, or
F8 in twos’ complement form. .

(c) Standard §8-bit addresses (see section 74).

(d) Addresses with offsets. In this case the address of T is 0900, so T—!1
represents 0900—1 (in hexadecimal), which is 08FF. As always, we
have to reverse these bytes, so the result is FF 08.

This concludes the process of hand assembly. You should go over it several
times to make sure you understand it. Of course, hand assembly can always be
checked by having the computer do it, as we will see in section 46.

EXERCISES

*1.  Find three errors in the first stage. of hand assembly (as in Figure 16(b))
illustrated below:

ORG  $0800
T DFS 1100 o
N DFS !1

E

BNE

Find two errors in the third stage of hand-assembly (as in Figure 16(d); the
first two stages are correct in this case) illustrated below:

ORG $0800
T DFS 100 0800
START LDX #!16 0864 A2 16
LOOP  TXA 0866 B8A
STA T,X 0867 8D __
DEX 086A CA
BNE LOOP  086B DO

Find two errors in the fourth stage of hand-assembly (as in Figure 16(e);
the first three stages are correct in this case) illustrated below:

ORG ~ $0900
T DFS 18 0900
W DFS I1 0908
START 1DA W 0909 AD 09 08

IDX  #!8  090C A2 08
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LOOP P T,X

BEQ DONE
DEX
BNE  LOOP

DONE (next instruction)

090E
0911
0913
0914
0916

B

Hand Assembly




44. DESK CHECKING AND
WALKTHROUGHS

Debugging of any program—but most particularly, of an assembly language
program—does not start by running it on the computer. It starts with desk
checking, which is nothing more than sitting at your desk and checking over
your work.

We all make errors in our programs. Even computer scientists with twenty
years’ experience make errors by the dozens. The difference between a good
programmer and a poor one is not that the good one makes no errors, but rather,
to a great extent, that the good one makes fewer simple errors.

We have already mentioned that an assembly language program should con-
tain one comment for every instruction. A good method of desk checking consists
of writing the program first without any comments, or with comments only where
you have to remind yourself what you were doing, and then going through it once
more and putting one comment on every line. Try.to make the comments as easy to
understand as you can. If you do this, you will often find bugs that would escape
you if your comments were more obscure.

Some errors are repeatable; the same error will happen every time you run
the program. Other errors are not repeatable; either a different error will happen
each time, or else the program will run properly most of the time and make an
error only every so often. A non-repeatable error must normally be found by
desk checking because, when you try to find it on the computer, it usually
disappears, only to reappear again later.

The most common kind of non-repeatable error happens when a variable is
not initialized, or set to some starting value. In that case, the starting value will
depend on what program (call it P) was running on the APPLE just before you
started work on this one. If your variable has address a, then the program P left
behind some quantity at the address ., which could be anything—an instruc-
tion code, data, or something left over from the program that was running
before P. This is called garbage.

You should make a list of the kinds of errors you find yourself making. Every
time you find an error, put it on your list and check for it next time you desk-
check. Initialization checking of all variables should always be done.
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Desk Checking and Walkthroughs

Once you finish desk checking, walk through various parts of your program a
few times. The walkthrough is a process which can best be illustrated by an
example. The following steps are keyed to the letters in Figure 17, which shows a
typical walkthrough:

(a)
(b)
()
@

©

)
(®

(h)
@

6)
(k)

Here is the program; it finds the sum of several numbers. It has already
been checked for initialization. The A and X registers and the carry flag
are set (in steps 1, 2, and 3); the elements of T, as well as N, were
presumably set before this program started.

For this walkthrough, we take N to be 4. (Choices like this are usually
necessary; otherwise, walkthroughs take far too long.) We start a table of
variables, with N = 4 and A = 0 since we start at step 1 by loading A
with zero. .

We do step 2, which loads X with 1. (Obviously, we don’t construct a

. whole new table; we simply add X to the table of step (b), with the value

1, and similarly throughout.)

We do step 3, and clear the carry C (that is, set it to zero).

We do step 4 and set A to 0+T(X), or T(X). Now look at X in the table;
itis 1, so T(X) is T(1). (Often you will find a bug at this point; in this
case, though, we didn’t.) Whenever a variable gets a new value, cross
out the old value. '

We do step 5 and add 1 to X so X is now 2.

We do steps 6 and 7. Is X equal to N? Is 2 equal to 4? No; so we go back
and do step 4 again. We set A to T(1)+T(X), and X is now 2, so this is
T(1)+T(2). (You will find a bug here if you forgot to put INX in the pro-
gram, or used DEX instead.)

We do step 5 and add 1 to X; so X is now 3.

We do steps 6 and 7. Is X equal to N? Is 3 equal to 4? No; so we do step
4 again. We set A to T(D+TQ2)+T(X), and X is 3, so this is
T(1)+T(2)+T(3). If we didn’t choose N = 4 in this walkthrough, this
would be a good time to start over, with N = 4, because otherwise the
walkthrough would start to get monotonous.)

We do step 5 and add 1 to X; so X is now 4.

We do steps 6 and 7. Is X equal to N? Is 4 equal to 4? Yes; so we do step
8. We store A in SUM, so that SUM = T(1)+T(2)+T(3).

Is this what we wanted? Probably not (since T(4) is missing); so we have
found a bug.

A good way todo walkthroughs is with a friend. As you walk through the
program, see if you and your friend, between the two of you, can find bugs.
Avoid this, however, if it tempts you to have your friend write your programs for
you (or if it tempts your friend).
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When you are done with desk checking and walkthroughs, do something else
for a while; then, later, do them again just before sitting down at the APPLE.
You will be surprised how many more errors you can find this way.

(H LDA #10
(2) LDX  #!1
3 CLC ‘
@ 4 LooP  ADC  T-I1,X
(5 INX
(6) CPX N
D BNE  LOOP
(8) STA  SUM
N A
® 45
N A X
© 4 1
N A X C
(d) 4 0 1 0
N A X C
© 4 & 1 0
T(1)
N A X - C
O 4 & X 0
T 2
N A X C
4 X X 0
(8 Tety 2
T+
T(2)
N A X C
4 0 X 0
) Fetr 2
T(H+ 3
T(2)
N A X C
4 g ¥ 0
o) w2
HbH+= 3
2y
T(1)+T2)+TA3)
Figure 17. A Walkthrough. (Continued on p. 148)
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N A X C
4 0 X 0
' : iy 2
0 HE A
4
T(+T2)+T(3)
N A X C SUM
4 & X 0 TQ)
(x) Fetr Z +T(2)
TE ¥ +T(3)
TRy 4
T(1)+T()+T(3)
Figure 17. A Walkthrough. (Continued)

EXERCISES

1. The following program is supposed to set Y to the number of trailing
blanks .in the string INBUF; that is, the number of consecutive blanks
immediately preceding the first carriage return ($8D). Walk through it
with INBUF containing ‘2" followed by two blanks and a carriage
return. Stop at the point in the walkthrough where the bug becomes
clear.* Describe the bug and.also give the table (similar to that of Fig-
ure 17(k)) up to this point.

¢

ORG
EQU
EQU

CRET
INBUF
START

LOOP1

LOOP2
BNE
INY
JMP

(next

$0800
$8D
$0200
#CRET
#$FF

INBUF, X
LOOP1

#10

#H "
INBUF, X
DONE

LOOP2
instruction)

*You may be able to find the bug by desk checking, rather than by walkthroughs; but answer these

exercises as if you were not.
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*2. The following program is supposed to set SUM to the sum of all of the o
signed numbers T(1), TQ2), ..., T(N) which are positive (ignoring those A
which are negative). Walk through it with N = 4, T(1) = 30, T(2) = -5, | ]
T(3) = —40, and T(4) = 15. As in exercise 1 above, stop when the
bug becomes clear, describe the bug, and give the table. (The array T Nt
starts at T(1).) , il

ORG $0850
T DFS 1100
SUM DFS !1 - .
START LDA #!0 . K i
STA SUM 1 i

o

[

LOOP IDX N : i
DA T-'1,X ‘ \

|

BMI  CONT ;‘ L

CLC ‘

ADC  SUM

STA  SUM i
CONT  DEX : |

BNE  LOOP HiD

3. The following program is supposed to set MINALL equal to the minimum
of all the unsigned numbers T(1), T(2), ..., T(N). Walk it all the way
through to the end with N = 2, T(1) = 3, and T(2) = 5, and give the table
at that point as before. Is there a bug? If so, what is it? (The array T starts

from T(1).)
ORG $08A0
T DFS  !200 i
MINALL DFS !'1
N DFS !1

START LDA #10
STA  MINALL

IDX N
LOOP LbA T-11,X
CMP  MINALL
BCS CONT
STA  MINALL
CONT DEX

BNE  LOOP




45. INTERMIXING, OVERWRITING,
AND STARTING ADDRESS ERRORS

Strictly speaking, we can write an APPLE assembly language program without
separate program and data sections—that is, with only one ORG statement, at
the beginning—and put instructions and data together. (We can even leave out

‘ORG entirely, in which case ORG $0800 is assumed.) Such intermixing, how-

ever, must be done in such a way that instructions never ‘‘run into’’ data. To

‘see what this means, consider the following instructions and data:

' 0807 A9 4C LDA #34C
0809. 8D 0C 08 STA L

080C ) L DFs 1

This kind of sequence is wrong and should never be used. To see why, consider
the machine language form at the left. After the instruction at 0809 is done, the
computer tries to do the instruction at 080C next. This means that the byte at
080C will be treated as an operation code, but this is not an operation code—it
is the value of L. (We just stored $4C here with the STA instruction, and $4C,
as an operation code, is a jump to the address given in the next two bytes—and
who knows what that would do.)

After every instruction you must consider what the computer is going to do
next. If the answer is ‘‘nothing’’—the program is finished at this point—then
the next instruction should be BRK, if it is a main program, or RTS, if it is a
subroutine. (Data following BRK or RTS, of course, is quite permissible.)

Closely relatéd to intermixing errors are overwriting errors. The instruction
codes of any program are supposed to be constant; they stay in memory all the
time that the program is being run. * If there is a mistake in a program which causes
some quantity to be stored in any instruction code byte, that byte is said to be
overwritten, or destroyed. (Many programmers also say ‘‘clobbered.”)

Overwriting errors are much more common-in assembly language than in any

*There are exceptions to this; see sections 78, 80, and §1.
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other language. They do not become apparent, as you are debugging, until some
later time (and possibly much later), when the program tries to do the clobbered
instruction. Remember, just as with intermixing errors, that the computer exe-
cutes machine language only—not assembly language. If LDX #1233 has the
machine language form A2 E9, then the computer will load the X register with
233 only if it finds A2 E9 there. If it finds something else there, it will do some
other instruction.

There are many possibilities. If the E9 is destroyed, then the X register is
loaded with some number other than 233. If the A2 is destroyed, the instruction
will be different. If you are lucky, the A2 will be overwritten with zero—the
operation code for a BRK. If you are unlucky, the A2 will be overwritten with a
one-byte instruction. The E9 will then be treated as the operation code of the
next instruction.

As it happens, E9 is the operation code for SBC #n. The next byte after the
E9—which is really an operation code—is now treated as #. When this sort of
thing happens, the computer is said to be out of alignment. Note that if n is a
one-byte instruction code, the computer is back in alignment again, but it has
just done a few unwanted—and potentially harmful —instructions. If n is a two-
or three-byte instruction code, the computer stays out of alignment (for the
moment, at least).

The main lessons to be learned from all this are two. First, when an assembly
language program makes an error, the error might have been caused long ear-
lier, by an overwritten instruction. Never assume that you know the real cause
of an error in an assembly language program; very often, it is caused by an error
that happened earlier. (This is sometimes called a propagated error.)

Second, be as sure as you possibly can, before starting to debug, that there
cannot be any overwriting. The most common cause of overwriting is storing
data in an array with an index that is our of range—that is, too large or too
small. If you set T(J) to something, where the array T runs from T(1) to T(100),
and J happens to be greater than 100 or less than 1 at the time, you may
overwrite an instruction of your program. If this is a kind of error which you
make frequently, you can write some instructions to test every subscript just
before it is used, to see if it is out of range. This slows down the program a bit
but should speed up the debugging process considerably.

Data, as well as instruction codes, can be overwritten. If you have an array
T, followed by some constant data (a character string, for example), and you
write into T with an index out of range, you may destroy the character string.
Later, when you want to display that character string (for example), strange
characters may appear on the screen.

You can test whether any of your instructions have been overwritten, during
debugging of your program, by using the Move and Verify commands of the
APPLE monitor (see the end of section 48).
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Still another related error concerns stariing addresses. If your data section is
given first, and you jump to the first address in the program, the computer will
try to execute data as instructions, just as in intermixing errors. This problem
can be avoided by giving the program section first; or by putting JIMP START
just before the data, and the label START just after it.

EXERCISES

*1. Point out all intermixing errors in the following program. (Not all of the
intermixed instructions and data in this program are erroneous.)

ORG  $0B0OO
0BO0O AD 038 OB MI¥  LDA I
0BO3 _ I DFS  !1
0B04 DO 08 BNE  MIX2
0B06 : J DFS  !1
0B07 AD 06 OB DA J )
) COUT EQU  $FDED
OBOA 4C 11 OB JMP  MIX3
* OBOD . K DFS !1
0BOE 20 ED FD MIX2 JSR  COUT
0B11 60 ' MIX3 RTS
0B12 L DFS  !1
: END

2. The following subroutine, which is presumably called several times dur-
ing a run, sets T(1) through T(100) to the value 2. Suppose that instead of
STA T=!1,X we had written STA T,X (causing an overwriting error).
What is this error? (Describe it in detail, using the machine language form
of the program as given.) At what time will this error affect the run, and in
what way? (Ignore the effects of the other error, that is, the fact that the
first byte of T will never be stored.)

S ORG  $0820
0820 T DFS 1100
0884 64 N BYT 1100
0885 AE 84 08 SUBR IDX N
0888 A9 02 LDA  #!12
0884 9D 1F 08 LOOP STA T-!1,X
088D CA * DEX

088E DO FA BNE  LOOP
0890 60 RTS

*3.  Answer the two questions of Exercise 2 above for the following subrou-
tine, which sets T(1) through T(100) to the value 233.
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46. THE LISA COMMANDS

Anyone who has ever used BASIC is familiar with BASIC commands (LIST,
RUN, SAVE, and the like), as distinct from BASIC statements (N = 1+J—K
and the like). LISA also has commands, many of which you must become
familiar with; but the fundamental ideas of LISA commands are a bit dif-
ferent.* ,

" Tn BASIC, there are line numbers, which are in numerical order. Putting in a
new _line between line numbers i'and j i merely a matter of choosing a line
number between i and j. In assembly language, however, line numbers are not
part of the language. LISA does use its own line numbers, but they are line
numbers in a literal sense: the first line is always line number 1, the second is
always line nurnber 2, and so on.

Since there is never any line number 1%, or the like, this means that putting in
new lines, when you are changing a program, is done by a command of its own: I
(for ““insert’”). In the same way, faking out lines is done with the command D—
for “‘delete.”” (The LISA prompt character | asks youto type a command.)

You can use the command I 7 to insert any number of lines you want to,
before line n (not after line n—watch this carefully). You can use I (all by
itself) to ingert any number of lines at the end of your program. In either case,
when you are done inserting new lines, type control-E return.

You can use the command D m to delete line m. You can use D m,n to delete
lines m, m+1, and so on up through (and including) n, all at once. If you want
to change lines (that is, delete them and then insert something else in their
place), then write M (for “modify”) instead of D; that is, M m or M m,n
depending on whether you are taking out one line or more than one.

LISA uses an old trick to make typing a new program look like a special case
of changing a program. In fact, inserting new lines into a program which has
nothing in it at all is exactly the same as typing a new program! So the first thing
you do, as soon as you load LISA, is to type I (by itself) and then type in your

*We have omitted discussion of how to start up LISA because this differs from one APPLE configu-
ration to the next; see your computer store for details.
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new program. (Remember, however, that every command in LISA—even an I
by itself—is followed by return.)

You will probably want to display your program, or parts of it, on the screen;
this is called listing. You can type L (by itself) to list your whole program; or
L m to list line m; or L m,n to list lines m, m+1, and so on up through (and
including) n. (You can also direct output to the printer, just as you would in
BASIC, and use L to obtain hard copy—that is, a printer listing of your pro-
gram.) When you think your program is ready to go, give it a file name (such as
TEST7) and then save it on the disk, by typing SAVE followed by the file name
(SAVE TEST?7 in this case). You can have up-to 30 characters in a ﬁle name,
and it must start with a letter, just like a variable name.

You cannot run your program immediately, as you can in BASIC. You have to
assemble it first—that is, you must have it translated from assembly language
into machine language. The command ASM (for ‘‘assemble’’) does this. It will
produce a listing on the screen of both the assembly language and the machine
language form of your program. Normally, this listing is too large to fit on the
screen, and LISA goes so fast that you cannot 1ook at the listing without typing
a space. This will stop the listing process; when you want LISA to continue,
type another space. You can do this as often as you like.*

Many people make a large number of typing errors, and the APPLE provides
several ways of correcting them. You can always use the backspace key (<) to
back up and type something over. If you want to start the entire line over, type
control-X. (These keys can also be used if you are typing input to a program
which uses the subroutine GETLNZ of section 25.)

Suppose now that you have typed a long line with some characters in it that
you do not want. You could, of course, type control-X, and then the whole
line over again, as above; but then, possibly, you would make another similar
typing mistake. LISA provides several special keys to allow you to fix mistakes
without retyping a line.

First, backspace (<) back to the first character that you do not want, and
now type control-K. This will pass over the haracter; further control-K’s will
pass over further characters. When you get to the first character that you do
want, type — over and over again until you get to the end of the line.” The charac-
ters control-O, control-L, control-J, and control-K stand for “‘up,”” ‘“‘down,’’
“left,”” and “‘right,”” respectively; they move the cursor (which is blinking on
the screen) in these directions. You can move the cursor anywhere on the screen
you want to, by using these keys over and over. (Remember that control-O is
not control-zero.)

*LISA 2.5 will stop the listing when an assembly error occurs.
"The APPLE has a repeat key, marked REPT. Holding down both this key and another key (for
example, —) will have the same effect as if that other key was typed over and over again.
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This also gives you a way of inserting characters into a line you have already
typed. Backspace to the place you want to insert; use the control characters O, L, J,
and K to move the cursor to a blank place on the screen; type the new characters;
use the control characters again, as before, to move the cursor back to the next
character position after the insertion; and finally type — over and over again until
you get to the end of the line, just as in deletion.

EXERCISES

l 1. Suppose that the current LISA program, with line numbers given, is

1 IDA P
2 STA  Q
3 ILDA R
4 STA 8

What will each of the following sequences of LISA commands do (to the
original program above)? Give the new LISA program for each answer
(with line numbers in sequence, starting from 1).

(@ I3

STA T
*(b) . D 2,4
© M 2

STA T

2. Supposé that the current LISA program, with line numbers given, is as in
the preceding exercise. Give a sequence of LISA commands (as short at
possible) acting on the original program above to yield each of the follow-
ing as the current LISA program:

*(a) 1 IDA M
A 2 STA N

3 IDA P

4 STA Q

5 DA R

6 STA S

() 1 IDA * P
2 IDA R

3 STA S

*(©) 1 IDA P
2 STA Q

3 IDA R

4 STA T
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3. Suppose that the current LISA program, with line numbers given, is as in Exer-
cise 1. What is displayed after the following sequence of LISA commands?




47. STEPPING AND TRACING

You are now ready to begin debugging, with the help of an APPLE program
called the monitor. (The APPLE screen is also sometimes known as a monitor,
but in this book the word ‘‘monitor”” will always refer to the program which is
at the heart of the APPLE system.)

To start working with the monitor, you type BRK (which is a LISA com-
mand, as well as being an instruction). The monitor displays * which is its
prompt character (much like ! in-LISA), asking you to type a monitor com-
mand. If your program starts at hexadecimal 0800, you can type 0800G (or 800G)
and the monitor will go to your program (G stands for ‘““go to’’) and execute it.*

Normally, you would not type 0800G unless your program was already work-
ing perfectly. Instead, you would use stepping and tracing (sometimes in con-
junction with breakpoint debugging, to be taken up in the next section). To step
through a program means to go through it one instruction at a time, or, as we
say, one step at a time. At each step, the monitor displays:

(1) the address of the instruction;

(2) the machine language form of the instruction;

(3) the assembly language form of the instruction;

(4) the cdntents of the registers in hexadecimal, gfter this instruction is

performed.
All this is done by typing S (for “‘step’’) instead of G. If we type 0800S (for

example), the following might be displayed:

0800 - AD 3C 08 LDA $083C
N A=01 X=00 Y=5F P=30 S=F8

Here the instruction LDA $083C, which has the machine language form AD 3C
08, is itself at address 0800; the A register contains 1, the X register contains zero,
and the Y register contains 5F in hexadecimal. (There are two further registers
displayed, P and S, which we will study in sections 60 and 67, respectively.)

*Do not type $0800G, which will not work; integers in monitor commands are always in hexadecimal
anyway, so the character $ is not used.
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Note that LDA $083C was probably given in your program as LDA W or some
other such instruction with a symbolic address (such as W). We presumably had
W =1, since the A register contains 1 after it was loaded with the value of W. When
your program has been assembled, you can write down (from the assembly listing)
1 the hexadecimal address of each variable. If you want to see what is in the byte with ‘
address 083C, just type 083C (followed by return) and this will be displayed in g
hexadecimal. This works for any address. In the same way, if you want to see what ‘ ‘;
is in an entire array, say from address 0884 to 08DB, just type 0884.08DB-(note ‘
the period) and all these bytes will be displayed in hexadecimal. This works for any | ‘
|

two addresses.* . -

We can step as many times as we want to, by typing S several times. Thus
0800SSSSS would step five times, starting at the beginning of the program.
Each step would be displayed, as above; so there would be five such displays on i
the screen, for a total of ten lines. i ‘

The letter S is preceded by the address where the stepping starts; but we can |
Jeave this out if we want to keep stepping from where we left off. Thus, for Il
example, we could keep typing SSSSS-over and over; and each time, five more
steps of the program would be displayed. i

The aim of stepping is to let you see whether your computations are taking i
place properly. You should be able to tell this by looking carefully at:

(1) the contents of the registers, at each step;
(2) which instructions you are actually doing;
(3) and, if necessary, the contents of cells and arrays of cells in the memory ‘

(by typing in their addresses, as above).

you do this, and you have a displayed step with instruction address xxxx, type I
xxxxL to list the machine language and assembly language form of this instruction il
and the next few instructions (to fill up the screen). You should be able to match "
this up with your hard copy of the program. ;
|
|

It is possible, during stepping, to lose track of where you are in your program. If 0 i “
Tracing is. “‘unlimited stepping.”” Typing 0800T (for instance) has the effect |

the screen indefinitely; you can stop and start this by typing a space, just as with
LISA listings (see the preceding section).’
After you have found some bugs in your program, get back to LISA from the

*This is often used to look at an entire program, including instructions and data; in this form, it is called

a dump.

“On APPLE systems without the Language Card, but with the Autostart ROM, S and T may not work;
however, you can use a step-and-trace program supplied, with instructions, on the diskette which
accompanies this book (see p. 403).

3 of typing 0800 followed by an unlimited number of S’s. Steps are displayed on
‘ “
“
[ |
i
|

|

|
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monitor* and then type LOAD followed by the program name (in the example
of the preceding section, LOAD TEST?7). This brings the program back into
main memory from disk, an operation known as loading the program. (Do not
confuse this with loading a register, which is quite different.) You are now
ready to use I, D, and M as in the preceding section, to fix bugs.

A generalized version of the LISA command LOAD allows you to combine
several programs into one, if you have saved them all. Let us say that they are
called PROG1, PROG2, PROG3, and so on. You LOAD PROGT just as in the
preceding section, and then you append the other programs. Thus AP PROG2
will append the second one; AP PROG3 the third one; and so on (AP stands for
“append”).

A description of all the LISA commands used in this book is given in
Table 13 in the Appendix. A description of all the APPLE monitor commands
used in this book is given in Table 14 in the Appendix. (For further monitor
commands, refer to the APPLE manuals.)

EXERCISES

*1.  Suppose that we are stepping through a program containing the following
two instructions in sequence: |

LDY #1100
INY

and the following information is displayed, after one particular step
(involving the first of these):
F

0838~ A2 64 LDY #$64
A=8D X=32 Y=64 P=30 S=F8

What would be displayed after the next step? (Assume that the P and S
registers are unchanged.)
2. Suppose thdt we are stepping through the following sequence of instructions:

LDA  ALPHA1

STA  BETAl
LDA  ALPHA2
STA BETA2
LDA  ALPHA3
BMI ALFNEG

*This is done by typing 7003G (in LISA 1.5), 6003G (in LISA 2.5, 48K), or E003G (in LISA 2.5,
64K).
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and the following information is displayed, after four steps:

08F4- AD 31 09 LDA $0931
A=6F X=00 Y=64 P=31 S=F4
O8BF7- 8D 6B 09 STA $096B
A=6F X=00 Y=64 P=31 S=F4
O8FA- AD 32 09 LDA $0932
A=FF X=00 Y=64 P=31 5=F4
08FD- 30 08 BMI $0907

A=FF X=00 Y=64 P=Bl1 S=F4

What APPLE monitor command will now display the hexadecimal con-
tents of the cell ALPHA2? '

*3 The following sequence of instructions is supposéd.to put into the Y regis-
ter the number of one-bits in BETA. (It has a bug, however.)

LDA  BETA
LDX #!8
DY - #!0
ASL

LOOP BCC  LOOP1
INY
ASL

LOOP1 DEX
BNE  LOOP

As we are stepping through the program, the following are the last four

steps displayed:

0920- 90 02 BCC  $0924
A=D0 X=05 Y=03 P=30 S=F6

0924-  CA DEX

A=DO X=04 Y=03 P=30 S=F6

0925- DO F9 BNE  $0920
A=D0 X=04 Y=03 P=30 5=F6

0920- 90 02 BCC  $0924

A=D0 X=04 Y=03 P=30 S=F6

Find the bug. How do the steps help you to do this? (Hint: Look at what
happens to the A register.)




48. BREAKPOINT DEBUGGING

Stepping and tracing are fine for short programs and for programs which do not call
subroutines like COUT, RDKEY, and the like; but for more general programs,
“breakpoint debugging is indicated.

A breakpoint is simply a point in a program at which you can stop, tem-
porarily, to look at the contents of a few registers and cells in memory, and then
continue. This is done by putting a break instruction (BRK, or hexadecimal 00)

" at the breakpoint, so that control is returned to the APPLE monitor system.

Breakpoint debugging .depends on one further feature of the monitor, namely
changing the contents of memory. In order to put 4k (in hexadecimal) in the cell
with address xxxx, we type xxxx:hh (or simply :hh if we have just looked at what
was in cell xxxx). As before, remember never to type $ as part of xxxx. In order
to put aa, bb, cc, and so on, into the array starting at address xxxx, we type
xxxx:aa bb cc (and so on). This will put aa at address xxxx; bb at address
xxxx+1; cc at address xxxx+2; and so on.

Suppose now that you want to set a breakpoint at the instruction whose
address is xxxx. You type xooc and when the system responds with Az you type
:00 to put a zero (BRK) at that point. When your program gets to that point, it
will do the instruction whose operation code is 00, that is, BRK; so it will go
back to the monitor. To remove this same breakpoint, type xxxx:hh with the
same hh as above (that is, the operation code that was at address xxxx before the
breakpoint was set). Then xxxxG will start the program up again.

If you know where your program is going (what sequence of instructions it is
doing next, at any time), then breakpoint debugging proceeds as follows:

(1) Pick an'{nstruction which you think the computer will reach in a correct
way; set a breakpoint there; and run the program up to this point. (If the
program starts at xxxx, type xxxxG as usual and wait until BRK is exe-
cuted, as described above.)

(2) Look at the registers and various cells in memory to see if the program
seems to be working properly so far. If it isn’t, go to Step 4 below; other-
wise, remove the breakpoint you just set, and set another breakpoint,
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picking a different instruction* to which you think the program will con-
tinue in a correct way.

(3) Start the program at the breakpoint you just removed, by typing xoxG
where xxxx:hh was used to remove the breakpoint. Note that this will con-
tinue with the first instruction that the computer did znot perform, because
it stopped at the last breakpoint. When the computer gets to the next
breakpoint, go back to Step 2.

(4) You now know approximately where your error is. Up to breakpoint a
(let us say) your program worked properly; whereas, at breakpoint b, it
was not working right. If you can find the error by looking again at your
hard copy, especially that particular section (and knowing, this time,
what it is actually doing), then fix it and reassemble. Otherwise, set
breakpoint a again, run the program from the beginning again up to
breakpoint @, remove this breakpoint, and start stepping through the pro-
gram, as in the preceding section.

If you do not know where your program is going—that is, if one of your bugs
might be that it is doing the wrong instruction, or going to the wrong place—
then do the steps outlined above with the following changes. In Step 1, pick
several possible breakpoints, and set them; do the same thing in Step 2. Also in
Step 2, remove ail breakpoints that you are sure the program will not get to,
when you start it up in Step 3; and look not only at the registers and memory,
but at which breakpoint you stopped at, to make sure it is the one you expected
at that point. ,

A problem arises in the breakpoint debugging of programs that use GETLNZ,
which uses the input buffer starting at address 0200. The problem is that the
APPLE monitor also uses this same input buffer, so that when you type com-
mands (like SSSSS), these will overwrite the characters you have there. To -get
around this, write a loop which moves these characters to another array, and
then put a breakpoint in your program after this loop is complete.

Sometimes, when you are using breakpoint debugging, you may enter an
endless loop by mistake. In that case, hit the reset key (on some APPLEs,
control-reset). This forces a break.

The Move and Verify commands, mentioned at the end of section 45 as a
way of testing whether instructions have been overwritten, have the forms

cccc<aaaa.bbbbM (Move)
cccc<aaaa.bbbbV (Verify)

The Move command above moves your program, which takes up memory from

*If you want to set the same breakpoint as before, then remove the breakpoint, perform one step
(using S), and then set the breakpoint again. The reason for this is left as exercise 2 below.
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address aaaa through address bbbb, to a large unused area of memory starting at
address cccc. The Verify command above, executed at some later time, checks
that the two copies of your program are still the same. If not, then the locations
where 'they are different will be displayed, together with the different contents
in each such pair of locations. (You should check at this point whether it was
actually the original or the copy that was overwritten.)

EXERCISES

"1. An INY instruction is at hexadecimal location 0A03. Give the APPLE
monitor command to:

(a) Set a breakpoint at.this location. .
*(b) Remove a breakpoint at this location.
(¢) Continue processing after breaking at this location.

*2. A programmer has set up a breakpoint in a large loop by writing BP1 BRK
(where BP1 is a label) in the assembly language form of the loop and has
run the program up to. BP1. It is now desired to continue processing this
prograni, starting immediately after BP1 and letting the computer go
around the loop until it gets to BP1 again. The programmer can do this by
typing yyyyG, where xxxx is the address of BP1 and yyyy = xoo+1.
Show that this cannot be done if the breakpoint was set at BP1 by xxxx:00
rather than by writing BRK in the assembly language form, unless a single
step is taken as suggested in the text. (Hint: Try to specify, precisely, how
you would go about doing this. There are several plausible ways, but none
of them work.)

3. Suppose that someone who is learning programming asks you, ‘‘Can you
put a breakpoint in a data byte, rather than an instruction byte?”” How

would you answer?
/




49. THE TELEPHONE LINE BREAK
PRINCIPLE AND BINARY SEARCH

We have noted that breakpoint debugging is used for programs that are too large
to be debugged by stepping and tracing. For even larger programs there is the
telephone line break principle.

Imagine yourself setting out to repair a four—mlle—long telephone line, in
which there is a break somewhere (the insulation has worn through). You can
start at one end of the line, and, every 100 feet or so, you can test it to see
whether there is a break so far—that is, between where you are and the begin-
ning of the line.

For a line four miles long, testing every 100 feet, you will need over 200
tests. There is a faster way, which proceeds as follows. Go two miles down the
line, and test it. If the test works properly, you know that the break is in the last'
two miles of line. Otherwise, it is in the first two miles. Either way, you have
now isolated two miles of line to test. ,

Now go one mile down this two-mile stretch, and test again. If this test
works, then the break is in the second of these two miles; otherwise, it is in the
first mile. Either way, you now have the break isolated to within one mile of
line. Now go halfway into this mile of line, and keep on dividing the line in
half, in this way.

The advantage of this method is that, in only nine tests (instead of over 200),
you can get the problem isolated to within 100 feet. The idea works even if
there is more than one break in the line; it finds the first break (the one closest
to the end where you started), and then, if there are further breaks, you can
repeat the process.

The same principle can now be used in debugging a program. Set your first
breakpoint about halfway through the program. When you get there (if you do),
check registers and memory to see if the program has worked properly so far. If
so, you know that your first bug is in the second half of the program. Other-
wise, it is in the first half of the program.

Either way, you have isolated one half of the program to work on. Now set a
breakpoint about halfway through that half, run your program again, and check
registers and memory again. In this way you can isolate your problem to about
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one-fourth of your program. Continue in the same way, dividing the program
roughly in half each time, until you have isolated your problem to an area small
enough to use ordinary breakpoint debugging or stepping and tracing.

As before, this method needs to be changed a bit if part of your problem is
that your program is not going where it is supposed to. It may be that if you set
a breakpoint halfway through a section of your program, the breakpoint will be
missed entirely. Of course, this does isolate the problem; it is in the first half of
that section. However, you can always set several breakpoints, just as in ordi-
nary breakpoint debugging.

_ Itis interesting that this same principle can be used to write a program to find
a quantity Q among the elements T(1) through T(N) of a table. We could com-
pare Q with T(1), then with T(2), and so on; but that is like trying to test every
100 feet of a telephone line. Suppose, however, that the elements of the table T

- are sorted. This means that they are in ascénding order, so that T(1) is the small-

est, T(2) is the next smallest, and so on. We can now find Q in the table by
using a binary search, which works by repeatedly dividing the table T in half.

To start the binary search, we compare Q with T(N/2). If Q is larger than
T(N/2), then Q must be T(J) for some J larger than N/2 (since the table is
sorted). Thus-Q is in the second half of the table. Otherwise, Q is in the first
half of the table (again because the table is sorted). In either case, we have nar-
rowed the search down to a table which is twice as small as the one we had
before. Now we compare Q with the middle element of that table, and continue
in the same way. This will be taken up further in section 86.

Remember never to try to step through (or trace through) an input or output
subroutine (RDKEY, GETLNZ, COUT, or the like). For input, the stepping
process gets in the way of typing the characters; for output, it interferes with the
display of characters on the screen. (In any event, there are clearly no bugs in
the APPLE monitor subroutines.)

EXERCISES

*1. You have'{mdoubtedly learned about common logarithms (to the base 10)
and natural logarithms (to the base e = 2.71828). In computer science,
logarithms to the base 2 are quite useful; we have log, x = y where
2" = x. Thus the powers of 2, from 1 through 64, have logarithms as follows:
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LOGARITHM
NUMBER (BASE 2)
1 0
2 1
4 2
8 3
16 4
32 5
64 6

and intervening numbers have intervening logarithms (thus V2 = 1414
has logarithm 0.5, since 205 = V/2) Derive a formula, in terms of loga-
rithms to the base 2, for the number of steps required to find a break in a
telephone line of total length x feet to within an interval of y feet, by the
method given in the text.

2. (a) The telephone line break principle cannot be used directly on a pro-
gram consisting of one very large loop, executed a large number of
times. Why not?

(b) Describe a method of adding a few instructions to your program,
which will allow the principle to be applied in the above case. (Instruc-
tions of this kind are known as diagnostic instructions.)

3. *(a) Derive a formula for the number of steps taken by a binary search of a
table of size n, in terms of logarithms to the base 2. Assume that the
search proceeds until the table, after having its size reduced many
times, has length 2; and that two final steps are taken at this point, to
check each of the two elements of that table. Explain, in words, how
to interpret your formula if » is not a power of 2.

*(b) Suppose that a binary search program was itself being debugged. In
this case the considerations of exercise 2(a) above would #ot be impor-
tant. Why not?




50.- ASSEMBLY-LEVEL PATCHING

When you are correcting several errors in a program, you will normally assem-
ble the program again after correcting each error or small group of errors. There
is a problem in this, however, that arises when you do not have a printer handy,
or if you are not making a separate hard copy every time you reassemble.

Suppose you are debugging the first assembly. In this process, you will need

-to know the addresses of various pieces of data and points in your program. If
you have a printout of the assembly, this information will be on the printout. If
not, you can write it down, little by little, as you debug.

For example, if LDA $08DA (displayed on the screen during stepping)
corresporids to LDA R in your program, then you know that R has the address
08DA. If LDA R has the label BETA in your program, and LDA $08DA is
given, in displaying the step, at the address 0838, then BETA is associated with
the address 0838.

However, suppose that you reassemble and look for further bugs. Most
of the information that you gained in this way will probably be lost. If you made
a change in your program, involving insertion or deletion, then all the addresses
coming after the change will not be the same as they were before. This is due to
the way the assembler assigns locations in strict numerical order (except when
there is an ORG pseudo-operation in the middle of the program).

There is a very old method of getting around these problems, known as
patching. It was developed for computer systems on which assembly took a
long time and incurred a high cost, so that programmers avoided reassembly for
economic reasons. In those days, patching required the changes in a program to
be translated by hand from assembly language into machine language. On the
APPLE, however, we can do assembly-level patching, which is simpler, more
foolproof and requires no hand translation.

The basic idea of patching is concerned with putting a sequence of new
instructions between the two instructions I, and I,. Suppose first that I; is a
three-byte instruction. Then patching proceeds, as follows:

(1) Get back, into LISA from the monitor (by typing 7003G or 6003G or
EO03G as directed at the end of section 47).
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(2) List your program. If it does not list properly, load it again with the
LOAD command (again as in section 47).

(3) Change instruction I, to a jump to a point after the end of your program
(just before the END statement). Note that this replaces three bytes by
three bytes, since JMP is also a three-byte instruction.

(4) At that point, write the instruction I, followed by the new instructions,
followed by a jump to I,. (These instructions are then called the patch.)
All addresses of other instruction and data words should remain
unchanged by this process. A

(5) Reassemble and start debugging again.

If I; is not a three-byte instruction, we have to find another way to replace n
bytes, before I,, by another set of n bytes. Instead of one instruction I,, take
two or three instructions before I,. If these total three bytes in length, replace
them by a jump as in Step 3. If they total four or five bytes in length, replace
them with a jump followed by one or two ‘‘nonsense’” bytes (BYT !0 will do).
These two or three instructions must also, of course, be put into the patch (in
Step 4) instead of the single instruction I;.

Patching is also used for taking out instructions. If one byte is to be taken out,
replace it with NOE, a one-byte instruction which does nothmg (NOP stands
for ‘‘no operation,”” and it is always pronounced ‘‘no op,”” never ‘‘nopp.”’) If
two bytes are taken out, replace them with two NOPs. In fact, you can do this
for any number of bytes, but it may be simpler to replace the first three bytes by
a jump to the instruction after the deleted ones. (Then again, you may find this
confusing.)

Never leave a working program with patches in it. As soon as you are sure
that your program works, reassemble it one final time, taking the patches out
and replacing them by what you would have written if you had not been
interested in patching.

An interesting and true story about patching concerns the Apollo spacecraft,
orbiting the moon, whose computer started registering an alarm and refusing to
perform further calculations. The astronauts quickly found out that it was the
alarm signal that was out of order, and giving a false error indication. A pro-
grammer, back on earth, wrote a patch in the error handling program, to test for
that particular error and treat it as if it were not an error. This patch was actually
done at the machine language level, and the changes to the machine language
program were transmitted to the astronauts by voice—and the patched program
got them safely back to earth.
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EXERCISES

Assembly-Level Patching

1. (a) -Consider the following sequence of instructions:

LDX

LOOP LDA
LSR

cMp

BNE

N JMP
LOOP1 DEX
BNE

#!8
BITS-'1,X

#$58
ERROR
PATCH1

LOOP

"This makes reference to the following patch, at the end of the program:;

PATCH1 LDA
LSR
ROR
JMP

BITS—1,X

BIN
LOOP1

’Rewrite this program so as to remove the patch; that is, bring the in-
structions of the patch back inside the main body of instructions, at

the point where they belong.*

(b) What instructions and labels become unnecessary in the process of

part (a) above?

*2.  Write an assembly-level patch to insert the instructions

‘ BNE
f INC

Just before BETA, in the sequence

BETA  STA

BETA
Q+2

P

Q
BETA
Qt!1
Q

Show both the patch and the modified sequence above.

*We may note that the point of the patch is to insert another LDA and LSR so that the carry flag, as set by
the LSR (and overwritten by the CMP after the first LSR), can be used by the ROR.
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#3,  Write an assembly-level patch which will remove the ASL and insert a
new ASL just after TYA in the sequence

IDX  #!0

LDY #!10
GAMMA ILDA BITS-!1,X

LSR

TYA :

BCC DELTA

CLC

ADC  #!1
DELTA ASL

TAY

INX

CPX  #!8

BNE GAMMA

STY BIN.

Show both the patch and the modified sequence above. Be very careful in
counting bytes, so that no instruction outside the patch has its address
changed. ’

PROBLEM 1 FOR COMPUTER SOLUTION
USING GETLNZ, MULT, DECI, AND DECOZ

At this point it is time to start writing programs on the computer.

Our first exercise will be, to a great extent, an exercise in typing, using the
editor, using the assembler, and correcting typing errors. There will be very
little actual programming.

You are to write a program which:

(1) Inputs a number, using GETLNZ and DECI.

(2) Stores this number and inputs a second number in the same way.
(3) Multiplies the two numbers, using MULT.

(4) Prints out the result, using DECOZ.

(5) Goes back to Step 1.

In doing this, it is assumed that you will be typing in the program MULT of
section 39 and the programs DECI and DECO of sections 62 and 63. Thereis a
lot of typing involved in this, and that is done on purpose. Typing in long pro-
grams which you have written, and then checking your own work to make sure
that you have done it right, is something that is absolutely necessary to you as a
programmer. Note that you must check every single instruction in MULT,
DECI, and DECO after you have typed it in.

After you have finished this program, make sure that you do not destroy the
file; you can use these three subroutines in further programming exercises in
this book.




51 CALLING LISA PROGRAMS FROM
BASIC PROGRAMS

Once you have debugged a LISA program, you can adapt it in such a way that it
becomes a subroutine, called by a BASIC program. This is done as follows:

(1) Start your LISA program with ORG $8000 followed by OBJ $0800 (OBJ
_ stands for ‘“‘object code’”). When LISA assembles your (assembly lan-
i ‘ , guage) source code, or source program, it will put your (machine lan-
guage) object code, or object program, in memory, starting at address 0800
(this is what OBJ $0800 does). However, the program will not run until its
instruction and data code bytes have been moved, in memory, to an area
which starts at address 8000.* (We will see, in Step (5) below, why this is
necessary.) '

At the start of your LISA program, write JSR IOSAVE (where IOSAVE
EQU $FF4A is specified). This saves all the registers. At the end of your

: @
-

S LISA program, write JMP IOREST (where IOREST EQU S$FF3F is
i

f

~—

specified). This restores all the registers and returns. Remember to use
JMP IOREST rather than JSR IOREST because IOREST itself will
return. All this is necessary because BASIC assumes that your LISA pro-
gram saves and restores all the registers.

(3) On the assembly listing, note the last address used by your object code.
If your program has length not greater than 1000 (hexadecimal) bytes,
this will be of the form 8ddd, and the last three digits, ddd, plus one,T
will be the hexadecimal length 7 of your program.

*For example, if the source code contains LDA W where W is at location 8150—that is, 150 (hexa-
A ‘ decimal) bytes after 8000—the object code form of this is AD 50 81. Suppose now that these three
: bytes have addresses 809C, 809D, and 809E. When LISA assembles this program, these three bytes
(AD, 50, and 81) will be stored at 089C, 089D, and 089E, but the bytes themselves do not change;
in particular, they do not become AD 50 09 (for the address 0950, or 150 bytes after 0800). .

TPlus one because there are n+1 bytes, rather than n bytes, between the addresses 8000 and 8000+n
(inclusive).
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4)

&)

(©)

Save your object code with the LISA command

DBSAVE name,A$800, L$n

where D stands for control-D; name is the name of the program; and n is
the length, as above. The control-D means that an APPLE DOS (Disk
Operating System) command is being executed. In this case, the com-
mand is BSAVE (which stands for ‘‘binary save’’—here ‘‘binary”’ is
again a misnomer, as before, since afl numbers in a computer are in
binary, but, as usual, it denotes integer and machine language program
codes, as contrasted with character codes). The A means ‘‘address’’ (the
starting address, at the moment, is $800, because this is where LISA put
the program) and the L means ‘‘length.”’

LISA programs normally use cells 0800 through 17FF. BASIC,

however, uses these cells for other purposes. In fact, BASIC uses all
available memory unless you tell it to do otherwise, with a HIMEM state-
ment. The first statement of your BASIC program should be

1 HIMEM: 32767

This forces BASIC to use only the first 32K of memory (cells O through
32767, decimal, or O through 7FFF, hexadecimal). Your LISA program
can now use memory starting at address 8000, as we have mentioned
above. The second statement of your BASIC program should be

2 PRINT “DBLOAD name,A$8000"

where D and name are as before. In BASIC, printing a string beginning
with control-D causes an APPLE DOS command to be executed. In this
case, the command is BLOAD (‘‘binary load,”’ which loads a program
that has been saved with ‘‘binary save’’—remember that ‘“to load a pro-
gram’’ means to bring it back into main memory from disk). The A
means ‘‘address,”’ as before, and this time the program is being brought
back, not into address $0800—where it was assembled by LISA—but
into address $8000, where it will execute.

To call your LISA program, use CALL 32768 in BASIC. (Note that n, in
the CALL n statement in BASIC, must be decimal, not hexadecimal.)

(7) You may want your BASIC program to pass data to your LISA program,

and vice versa. In that case, the first statement of your LISA program
should be JMP START, followed by a few bytes of data, followed by
START which is the first instruction of your program. The JMP START
takes three bytes, which means that the first data byte has decimal
address 32771. The next few data bytes have decimal addresses 32772,
32773, and so on. The BASIC statement POKE a,e now puts e into the
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cell with decimal address a; the statement K = PEEK(a) puts into K what
is in the cell with decimal address a. PEEK(a) may also be used in
expressions; -one may write K = K+PEEK(a), for example, to add to K
what is in the cell with address a. To pass an array T of data between a
BASIC program and a LISA program, determine the address of the array
in the LISA program and convert this to a decimal number a. Now
POKE a+1J,e into T(J) (assuming that T starts with T(0)); while
K = PEEK(a+]J) puts T(J) into K. As before, PEEK (a +J) may be used
in more general expressions. The quantity e in POKE a,e and POKE
a+J,e may be a constant, variable, or an arithmetic expression (having a
value v in the range 0 < v < 255).

EXERCISES

1.

Suppose that we were to call the subroutine MULT (as given in section 39)
from a BASIC program. Since the BASIC program cannot load the registers
of the 6502, let us assume that we have two bytes, MULTA and MULTX,
which hold the A and X register contents, respectively, before and after the
call to MULT. These are given immediately following the jump to START, as

. follows: :

ORG  $8000

JMP START
MULTA  DFS 1
MULTX  DFS 11

(a)/Give the assembly language statements required to call MULT in this
situation, entering MULT with the A and X registers properly set, and
properly using the quantities left in the A and X registers by MULT.
(Remember to use IOSAVE and IOREST.)

*(b) Give the BASIC statements required to set M = I+J in BASIC, using
this assembly language subroutine. Assume that I, J, and M are 8-bit
quarttities.

(¢) Do part (b) above if I and J are 8-bit quantities, while M is a 16-bit
quantity. Note that M must be reconstructed from its two halves,
which are placed in MULTA and MULTX by the sequence given in
the answer to part (a) above.

An array U in an assembly language program, with 100 elements ranging
from U(I) to U(100), has the hexadecimal starting address 80ES.

*(a) Write a FOR loop in BASIC which moves the elements T(1) through
T(100) in the BASIC program into this array.
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(b) Write a FOR loop in BASIC which moves the elements in this array back

to T(1) through T(100).

*(¢) Do part (a) above if T has 101 elements, ranging from T(0) through

T(100).

3. Suppose that you have three assembly language programs, ALPHA,
BETA, and GAMMA, all of which are called from the same BASIC pro-
gram. You assemble your three programs in one assembly, and at the start

of the assembly you write

ORG
JMP
JMP
JMP.

What BASIC statement can now be used to call GAMMA from BASIC?

$8000
ALPHA
BETA

GAMMA




52. LOGICAL “AND”

We now proceed to discuss the rest of the instructions on the 6502.

There is an instruction called AND, which sets individual bits of the A regis-
ter to zero. Most of the time, AND is used with a binary (or hexadecimal) con-
stant called a mask. Zero-bits in the mask specify which bits are to be set to zero.

~ Thus

AND #%01111110 or AND #$7E

sets the first and last bits of the A register to zero.

AND'is a bit-by-bit instruction. This means that each bit in the A register is
determined, after the AND, solely by its old value and by the value of the
corresponding bit in the mask.* Let us denote the kth bit in the mask by Py, and
the k-th bit in the A register by Q; (before the AND) and by R, (after the AND).
Then Ry is determined as follows:

Q=0 Q =1 0 1
P, =0[R, =0 R,=0 bbreviati 0l0 0
Po= 1R =0 Ry =1 or, abbreviating, o 1

Those who know mathematical logic will recognize, in the table at the right,
the truth table for logical ‘‘and’’ (which is why this instruction is called AND).
If 0 means ‘“false,”” and 1 means ‘‘true,”” then R =P and Q is given by this
table, because R is true (= 1) only if P and Q are both true.

AND sets tie zero status flag, and this allows it to be used for testing indi-
vidual bits in memory. Thus, for example, the sequence of instructions

LDA Q
AND  #%00001000
BEQ BZERO

*This is not true of addition, for example, where each bit in the A register is also influenced by the
carry from the addition in the bit just to the right of it.
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goes to BZERO if the fourth bit from the right in Q is zero. In that case, the
fourth bit from the right in the A register will be zero, and all the other bits of Ik
the A register will be set to zero by the AND. Thus the A register will be zero, Il
and the zero status flag, which is tested by BEQ, will be set. |

AND is used, together with shifting, to load fields of individual bytes into the ¥
A register. A field is a part of a byte. For example, the diagram below shows a H
byte divided into three fields:

0 |

I
MNEMONIC  ADDRESSING FAMILY |
CODE MODE CODE ‘

This is the format of the operation codes of eight of the instructions on the 6502:

LDA, STA, ADC, SBC, CMP, AND itself, and two instructions which we take

up in the next two sections, ORA and EOR. Each of these eight instructions has |

a mnemonic code (000 through 111). The addressing mode (constant, indexed |

by X, indexed by Y, etc.) also has a three-bit code. Suppose we want to load the !1 ‘

A register with the addressing mode of LS. We can write ’ I
I

LDA L5 ; OPERATION CODE TO A-REGISTER it |
AND  #%00011100 ; MASK OUT MNEMONIC, FAMILY CODES ‘

LSR ; SHIFT TO RIGHT-HAND ‘
LSR ;  END OF A-REGISTER i

The reason that we shift fields to the right-hand end of the register is that the
number in the field (0 through 7 in this case) is then in the same format as the
corresponding number in the entire register (binary 00000000 through 00000111,
in this case). The instruction CMP #!5 can now be used, for example, to check
whether the addressing mode is equal to 5. (Without the two LSRs, this would
have to be CMP #120). We could also shift before masking, thus:

LDA L5 ; OPERATION CODE TO A-REGISTER
LSR ; SHIFT TO RIGHT-HAND
LSR ;  END OF A-REGISTER

AND #%00000111 ; MASK OUT ALL BUT ADDR. MODE

Note that the mask has to be changed in this case. This example shows why a
mask is called a mask; all fields except the one we are looking for are cleared,
or masked out.
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The preceding two uses of AND may be combined, to test whether a field is
equal to zero. Thus

" DA L5 . LOAD L5 AND MASK OUT ALL BUT
AND  #%00011100 : ADDR. MODE —— Z FLAG SET IF
BNE NONZ . RESULT (ADDR. MODE OF L5) = 0

goes to NONZ if the addressing mode field of LS is not zero.

AND sets the sign status flag, as well as the zero status flag. Note, however,
that AND #%01111111 does not produce the absolute value of a signed
integer; if it is negative, it must be converted into its twos’ complement.

The example of mnemonic code and addressing mode fields given above was
adapted from Table 15 in the Appendix. All the operation codes of the 6502
are grouped into ‘‘families’” like this.

EXERCISES

1. Take the logical AND of the following numbers of two hexadecimal digits
apiece, by converting the numbers to binary, taking the logical AND, and
convertirig the result back to hexadecimal. Show your work.

*(a) 20 and 35.
(b) F6 and C7.
*(c) 55 and AA.

2. Take the logical AND of the following numbers of two hexadecimal digits
apiece. Try to do the binary conversions in your head. (Express the
results in hexadecimal.)

(a) 35 and OF.
*(b) 72 and FO.
(c) 94 and81.

*3,  Write a program to load the A register with the mnemonic code of L5 (the
leftmost three bits) by shifting left, using ROL, and masking. (There is a
slight trick to this one, based on the fact that ROL really rotates a nine-bit
register, as explained in section 34.)




53. LOGICAL “OR”

To set individual bits of the A register to one, rather than zero, we have the
instruction ORA. (You have undoubtedly noticed by now that every mnemonic
on the 6502 has three letters, which is why A—for the A register—is on the
end of ORA.) :

In this case, one-bits, rather than zero-bits, in the mask specify which bits are
to be set to one. Thus

ORA  #%10000001 or ORA #$81

sets the first and last bits of the A register to one. Like AND, ORA is used,
most of the time, with a binary or hexadecimal constant (the mask).

ORA, like AND, is a bit-by-bit instruction. The determination of Ry from Py
and Qy, as in the preceding section, is:

Q=0 Q=1 S 0 1
Pp=0R, =0 Ry=1 - 0|0 1
P = 1R =1 R, =1 or, abbreviating, 1

In mathematical logic, the table at the right is the truth table for logical “‘or,”
giving R = P or Q, because R is true (= 1) if either P or Q (or both) is true.

We have seen in section 24 that the leftmost bit of any character code which
is displayed (using COUT) is always 1. The ORA instruction is often used
(see section 73, for example) to set this bit to 1, if it is not known to be 1,
before the given character code is displayed.

Just as AND may be used to unpack bytes, or break them up into fields, ORA
may be used to pack fields back into bytes. This use of ORA depends on the fact
that the logical “‘or” of any quantity Q with zero is Q itself. Suppose we have
three bytes called MCODE, AMODE, and FCODE, which contain the
mnemonic code, addressing mode, and family code respectively, as in the
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preceding section. Then we can put them back together, into a byte called
OPCODE, in the following way:

‘LDA MCODE ; PUT MNEMONIC CODE IN A-REGISTER
ASL ; SHIFT THIS CODE

ASL ; THREE BITS TO

ASL ; THE LEFT

ORA  AMODE ; INSERT ADDRESSING MODE

ASL ; SHIFT MNEMONIC CODE AND ADDRESSING
ASL ;  MODE TWO MORE BITS TO THE LEFT
ORA  FCODE ; INSERT FAMILY CODE

STA  OPCODE ; RESULT IS THE OPERATION CODE

We could also add, instead of using ORA; but note that the carry would have to
be cleared in that case. This use of ORA is quite common when we are dealing
with the two 4-bit halves of a byte separately (see section 83).

ORA, like AND, sets the sign status flag. Note, as before, that ORA
#%10000000 does not change a positive integer into its negatlve this must be
done by forming the twos’ complement.

“ORA also sets the zero status flag. If the mask is constant, the zero status flag
is always cleared, indicating a non-zero result, except, possibly, if the mask is
zero. We may note that ORA 330 leaves the A register unchanged; so it may be
used to set the zero and sign status flags from the current contents of the A
register, if they had been altered by a preceding instruction not involving the A
register (INX, DEX, ASL Q and so on). Note also that AND #$FF accom-
plishes the same thing.

The fact that ORA sets the zero status flag may be used to test a 16-bit quan-
tity for beingrzero. Thus ‘

LDA P
ORA P+!1
BEQ PZERO

goes to PZERO if the 16-bit quantity P is zero, because then, and only then,
will the logical ““or”’ of its two bytes be zero. The same trick works with quantities
having 24 bits, 32 bits, and so on.

EXERCISES

1. Take the logical OR of the following numbers by converting them from
hexadecimal to binary, taking the logical OR, and converting the result
back to hexadecimal. Show your work.

(a) 20 and 35.
*(b) F6 and C7.
(c) 55 and AA.
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2. Take the logical OR of the following hexadecimal numbers. Try to do the
binary conversions in your head.

*(a) 35 and OF.
(b) 72 and FO.
*(c) 94 and 81.

3. Write a program to form a byte P in memory out of two hexadecimal digits,
LDIGIT (at the left) and RDIGIT (at the right). Assume that LDIGIT and
RDIGIT are single-byte quantities, in the range from zero to 15.
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Our third and last bit-by-bit instruction, EOR, is used to change individual bits
in the A register—that is, to make them 1 if they are O and 0 if they are 1. Like
AND and ORA, EOR is normally used with a constant binary or hexadecimal
mask. The bits to be changed are one-bits in the mask; in this way, EOR is like
ORA. Thus, for example,

EOR. #%00001111 - or EOR #$OF

changes the rightmost four bits of the A register, while leaving the leftmost four
bits unchanged.

In mathematics, **P or Q”” includes the case that both P and Q might be true
(as in the statement “‘ab = 0 if, and only if, either = 0 or b = 0*"). In ordi-
nary English, ‘“P or Q" excludes this case (as in the statement *‘Either Smith or
Jones will win the election’”). This so-called exclusive OR is sometimes used in
mathematical logic, and it gives rise to our EOR instruction, because the deter-
i mination of Ry from Py and Qy, as in the last two sections, is:

Q=0 Q=1 0 1
00 1
111 0

P
‘ Il:i ; (1) g‘; ; (1) g}t ; (1) or, abbreviating,
|

1 and this is the truth table for exclusive OR. (It is the same as the truth table for the
ordinary or inclusive OR, except that, if P, and Qy are both 1, Ry is zero; that is,
the case in which the two quantities are both true is excluded.) The exclusive OR
of any quantity Q with zero is Q itself, just as with the inclusive OR.

EOR may be used in making signed comparisons. The instruction EOR
#%10000000 (or EOR #$80) converts the signed quantity p, with —128 <
p =< 127, into the unsigned quantity p+128, with 0 < p+128 < 255.* Every
number in the signed range corresponds, in this way, to a number in the

*You may verify, by t}ying various examples, that adding 128 (binary 10000000) to any signed
number is the same as changing its leftmost bit (to 1 if it is zero, or to zero if it is 1).
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unsigned range. Furthermore, P < Q (signed) if and only if P+128 <Q+128
(unsigned), so that the sequence of instructions (for example)

LDA Q ; LOAD Q (SIGNED)

EOR #%10000000 ; CONVERT TO Q+128 (UNSIGNED)
STA  TEMP ; SAVE Q+128

ILDA P ; LOAD P (SIGNED)

EOR #%10000000 ; CONVERT TO P+128 (UNSIGNED)
CMP TEMP ; COMPARE WITH Q+128

BCC LESS ; IF P+128 < Q+128, THEN P < Q

goes to LESS if P < Q, where P and Q are both signed. (Another way of doing
signed comparisons is taken up in section 56.)

Of course, EOR 3#%10000000 does not convert a number into its negative.

However,we can use EOR #%11111111 (or EOR #$FF) to convert a number
into its ones’ complement. We recall (see section 7) that the twos’ complement
is the ones’ complement plus one; and this gives us a fast way to subtract the X
register from a constant k—namely, take the ones’ complement of X— (k+1),
sinceif thisis z, thenz+1 = — (X —(k+1)), sothatz = k —X.Ifk = 7, we write

TXA ; CALCULATE X—8 AND THEN TAKE
SEC . ONES' COMPLEMENT, GIVING
SBC #!8 ; Z WHERE Z+1 = — (X—8) = 8-X,
EOR #$FF ; OR Z = (8-X)-1 = 7-X

EOR, done twice, ‘‘undoes itself”” —the result of EOR n followed by another
EOR n (for any value of n) is to leave the A register unchanged. In particular,
EOR #%10000000 converts p+128 (unsigned) back to p (signed), as well as
the reverse. This property of EOR may be used to perform field replacement; it
the addressing mode field of OPCODE is to be replaced by the addressing mode
field of OP2, for example, we could presumably write

LDA  OP2 ; GET A-MODE FIELD OF OP2
AND #%00011100 ; (MASK OUT ALL OTHER FIELDS)
STA  TEMP ; AND SAVE IT

AND #%11100011 ITS OLD A-MODE FIELD
ORA  TEMP INSERT NEW A-MODE FIELD
STA  OPCODE ; AND STORE UPDATED OPCODE

IDA  OPCODE ; GET OPCODE AND MASK OUT

but we could save two instructions with this unusual trick:

LDA OPCODE ; GET OLD OPCODE

EOR opP2 : (A-MODE FIELD IS CLEARED AND
AND #%11100011 ; EOR-ED ONCE; ALL OTHER FIELDS
EOR OP2 ; ARE EOR-ED TWICE — — NO CHANGE)

STA  OPCODE ; STORE UPDATED OPCODE
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Either EOR or ORA can be used in certain situations. In particular, all the
uses of ORA which are commented INSERT in this section and the previous
one could just as easily be EOR.

On a number of other computers, the *‘exclusive OR’” instruction is given as
XOR instead of EOR. LISA allows you to write XOR instead of EOR on the
6502, if you so desire.

EXERCISES

1. Take the logical exclusive OR of the following numbers by converting
them from hexadecimal to binary, taking the logical exclusive OR, and
converting the result back to hexadecimal. Show your work.

*(a) 20 and 35.
*(b) F6 and C7.
“*(¢) 55 and AA.

2. Take the logical exclusive OR of the following hexadecimal numbers. Try
to do the binary conversions in your head.

(a) 35 and OF.
*(b) 72 and FO.
(c) 94 and 81.

*3. Write a program to branch to LEQ if the signed quantity P is less than or
equal torthe signed quantity Q. Your program should be seven instructions
long. (Hint: see section 28.) ’
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We have seen how individual bits of a byte can be tested by using AND. There
is another instruction on the 6502* that does somewhat the same thing, namely
BIT. The instruction BIT Q takes the logical AND of Q and the A register, and
sets the zero status flag in the same way that AND Q does. Thus the instruction
sequences '

ILDA Q LDA #%00001000
AND #%00001000 BIT Q
BEQ BZERO ) BEQ BZERO

both go to BZERO if the fourth bit from th'e'right in Q is zero.
The differences between AND and BIT are:

(1) BIT cannot be used with indexing.

(2) BIT cannot be used with a constant (such as BIT #$80).

(3) BIT does not change the A register. This property of BIT can be used to
test Q against a “‘sliding mask’” that starts as binary 00000001 and shifts to the
left each time we test. Thus the following program is an alternative way of
counting the one-bits in Q (see section 35):

INITIAL VALUE OF BIT COUNT
LDA #11 INITIAL VALUE OF MASK
TALLY BIT Q TEST THIS BIT (DOES NOT

LDY #!0 ;
BEQ TALLY1 ; CHANGE MASK) — — IF EQUAL

INY TO 1, ADD 1 TO BIT COUNT
TALLY1 ASL SLIDE THE MASK AND RETURN
BCC  TALLY UNLESS MASK WENT INTO CARRY

If we add LDA Q to the first program in section 35 (as we must, in order to get
an equivalent program), then the above program is 16 cycles slower, but one

*Relatively few computets other than the 6502 have an instruction like BIT. Almost all computers,
by contrast, have instructions like AND, ORA, and EOR.
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byte shorter. We can also use BIT when there are several quantities which must
be tested against the same mask. Thus

)

LDA #31 ; SET UP MASK

BIT C1 ; TEST RIGHTMOST BIT
BNE C10DD ;0 OF C1

BIT c2 ; TEST RIGHTMOST BIT
BNE C20DD ; OF C2

goes to C10DD if C1 is odd (rightmost bit equal to 1); otherwise it goes to
C20DD if C2 is odd. We could, of course, do further bit tests with the same
mask.

(4) BIT Q sets the sign status flag to the sign of Q, regardless of the sign of
the A register. This makes BIT the only 6502 instruction that sets the zero and
sign flags according to the results of two different calculations. (Remember that
the zero status flag setting is taken from the logical AND of Q and the A regis-
ter.) This property of BIT permits us to go to QNEG if Q is negative in still
another alternative way to those of section 28:

BIT Q ; TEST THE SIGN BIT
BMI  QNEG ; OF Q

Note that this does not change the values of A, X, or Y, and can thus be used
even if A, X, and Y are all in use (or if their contents are unknown). The space
and time used by the above instructions are the same as those of the alternatives.
One further property of BIT is taken up at the end of the next section.
An unusual use of BIT allows you to save a byte or two when skipping over a
single two-byge instruction. Consider, for example, two programs, called P1 and
P2, which start with the following logic:

P1  ORA #$40
JMP P1A
P2  ORA #$20
P1A JSR SUB
r'/

Now suppose that we replace the three-byte JMP by the single byte $2C, the
operation code for BIT. The ORA at P2 has the machine language form 09 20.
Thus the BIT is interpreted as BIT $2009, and it performs a BIT instruction with
whatever is in cell 2009. This does nothing (except to the flags, which may be
ignored), and JSR SUB is the next instruction; the result, therefore, is effectively
the same as that of the JMP. Note that this sequence “goes out of alignment” (see
section 45) on purpose!
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1. The instruction BIT Q is like AND Q, except that AND Q puts the result 0
in the A register, whereas BIT Q does not. What other pair of instructions i ‘

on the 6502 has a similar property? ;‘ i

*)  What is wrong with the following program to count the number of nega- ‘H |
tive elements of the array T, from T(1) through T(N)? '

LDX N Al
DY #!0 1t
LOOP BIT T-1,X ' i
BPL  EPOS . i
o | L
EPOS DEX !
BNE  LOOP |

3. How much space and time does the sequence (given in the text)

LDA #31

BIT C1
BNE C10DD
BIT C2
BNE C20DD

save, compared to its alternative (using AND)? Note that time will be
saved only when the computer does not branch to C10DD.
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When we add two unsigned numbers, and the answer is too large to fit in one
byte (that is, greater than 255), the carry flag is set. Similarly, when we subtract
two unsigned numbers, and the answer is less than zero, this is indicated in the
carry status flag (by clearing it, whereas it would be set otherwise).

When we add or subtract two signed numbers, however, the answer may also
be too large, or too small, to fit in one byte as a signed number. This is called
arithmetic overflow, or simply overflow.

Overflow is different from carry. For example, 100+100 = 200 (decimal),
and the operation of adding 100+ 100 does not produce carry because 200 is less
than 256; but it does produce overflow, because the range of signed numbers is
from —128 t0.127; and 200 is greater than 127.

Or consider (—3)+5. This does produce carry, because it is the same as the
unsigned addition 253 + 5, which produces a result that is greater than 255; but
it does not produce overflow because (—3)+5 =2, and 2 is well within the
range (from —128 to 127) of the signed numbers on the 6502.

For this reason, overflow has its own status flag on the 6502. This is called V
(not O, because, for example, O = 1 looks like ‘““zero equals one’’), and the
branches on roverﬂow clear and set reflect this designation: \

BVC L Branch to L on overflow flag clear
BVS L Branch to L on overflow flag set

This concludes our study of conditional branch instructions. There are eight of
them, based on four status flags (zero, sign, carry, and overflow), namely BEQ,
BNE, BPL, BMI, BCC, BCS, BVC, and BVS.

The instructions ADC and SBC set the overflow flag if there is overflow and
clear it if there is no overtflow. Thus

ILDA P ; ADD P AND Q, AND GO TO
CLC ; OVER IF P+Q IS OUTSIDE
ADC Q ; THE SIGNED NUMBER RANGE
BVS OVER ; (—128 THROUGH 127)
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goes to OVER if adding P and Q produces overflow. Note that ADC and SBC
ate the only instructions, of those which perform a calculation that might over-
flow (such as the increment, decrement, and shift instructions), which affect this
flag. Especially important is the fact that compare instructions do not affect the
overflow flag. (Table 3 in the Appendix shows the instructions which act on
the overflow flag; these are marked with a V in the ‘‘Flags”™ column.)

In our discussion of signed comparisons in section 28, we noted that BPL and
BMI cannot be used because, for example, if P is —29 and Q is 100, then
P < Q and P—Q is negative (—129, to be specific), but the sign bit of this is
positive. On the other hand, there is also overflow in this case because — 129 is
not in the range of signed numbers. . '

Suppose now that we want to branch to LESS if P < Q. It is not too hard to
see that BMI will work as long as there is no overflow. Furthermore, if there is

overflow, then either:

(a) the result is greater than 127, in which case the number is positive, but

its sign is negative; or
(b) the result is less than —128, in which case the number is negative, but its

sign is positive.

In other words, the sign is always wrong in this case; so wWe can use BPL,
rather than BMI. (BPL also branches on zero, but in this case the result can
never be zero.) This gives us another way to branch to LESS if P<Q, as signed

numbers:

IDA P CALCULATE P—Q IN THE
SEC USUAL WAY AND SET THE
SBC Q SIGN AND OVERFLOW FLAGS

BVS OVSET ; IS THE OVERFLOW SET

BPL  GEQ NO, TO GEQ IF P >=Q

BMI  LESS AND TO LESS IF P < Q
OVSET BPL LESS : YES, TESTS ARE BACKWARDS
GEQ (next instruction)

This is both shorter and faster than the alternative in section 54.

Just as we can clear the carry (CLC), we can clear the overflow flag; the instruc-
tion CLV does this. There is no instruction to set the overflow flag, however.

Overflow has an interesting theoretical property. The ADC instruction adds
two binary numbers exactly as we did in section 3—from right to left. At each
of the eight bit positions, there is the possibility of carry. In particular, at the
leftmost bit position, there is the carry out (what goes into the carry ﬂag) and
the carry in (that is, the carry out of the second bit position from the left). It can
now be shown that the overflow flag is set to the exclusive OR of this particular
carry out and carry in. This simplifies the hardware of the 6502.
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The final property of BIT, which we mentioned in the preceding section, is
that BIT Q places the second bit from the left of Q (regardless of what is in the
A register) into the overflow status flag. This gives us a fast way, using BVC or
BVS, of testing this particular bit in a byte, if that is ever necessary.

EXERCISES

| 1. *(a) How much space is saved by the signed comparison program of this sec-
tion, as compared with the alternative in section 54? Show your work.
(b) How many cycles are saved by the signed comparison program of this
section, if it goes to GEQ, as compared with the alternative in sec-
tion 54?7 (Show your work. Note that there are two different cases in
which the program of this section goes to GEQ. The total number of
cycles is the same in both cases.)

#(c) How many cycles, maximum and minimum, are saved by the signed
| comparison program of this section, if it goes to LESS, as compared
‘, 1 with the alternative in section 54? (Show your work: Note that there

- ' are two different cases in which the program of this section goes to
LESS. One of these takes more cycles than the other.)

2. *(a) Rewrite the program of this section in such a way that the first three
instructions remain the same, but BVC OVCLR is the fourth instruc-
tion. Note that the action of this program, after the subtraction, may be
expressed in the following table:

‘

OVERFLOW
CLEAR SET
SIGN GO TO GO TO
+ GEQ LESS
/
- SIGN GO TO GO TO
- LESS GEQ

Make all further changes which are neeessary in order that the old pro-
gram and the new program do the same thing in all four cases.
*(b) Are space requirements affected by this change?

3. (a) Using the table of exercise (2) above, rewrite the program of this sec-
tion in such a way that the first three instructions remain the same, but

L . -
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BMI NEG is the fourth instruction. Make all further changes which are
necessary in order that the old program and the new program do the
same thing in all four cases.

(b) Are space requirements affected by this change?




57. SAVED AND RESTORED
VARIABLES

In'this section and the next seven sections, we shall take up a number of funda-
mental facts about subroutines on the 6502.

There is a very common bug in writing subroutines which was alluded to
briefly in sections 25, 34, and-42, and whichwe will now take up in its full gen-
erality. It may be illustrated as follows. Suppose we have a loop which calls
SUB a total of N times:

LDX N ; PUT COUNT IN X-REGISTER
'LOoOP JSR  SUB ; CALL SUB
. - DEX : DECREASE THE COUNT
BNE  LOOP ; IF NON-ZERO, LOOP BACK

Let us look at this loop very carefully. First we load N; then we call SUB; then
we decrease N by 1—at least we think we do. The problem is this: after the
subroutine returns, and we do the DEX, how do we know that N is still in the X
register?

If SUB is simple enough, it doesn’t use the X register at all and there is no
problem; but/it might be that SUB has a loop of its own, and leaves the X regis-
ter set to zero. In that case, DEX will set it to —1, and BNE will always branch.
In other words, we have an endless loop. In general, if SUB uses the X register
for its own purposes, problems of this sort may arise; they do not always give
rise to endless loops, but they do normally cause wrong answers to be calcu-
lated. The same thing can happen with the Y register, of course; and it does
happen with many common subroutines, such as RDKEY (as we noted in section
25).

How do we solve such problems? One way to do this was suggested in sec-
tion 42. At the beginning of SUB, we save the X register (as, for example, by
STX TEMP). At the end of SUB, just before we return, we restore the X regis-
ter (as, in this case, by LDX TEMP). Whatever value X had at the beginning of
SUB, that value is restored at the end, so that SUB acts as if it had not changed
Xat all. (For another method of saving and restoring, see sections 60 and 61.)
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In any subroutine, we must consider the possibility of saving and restoring
the various registers. This does not need to be done in any of the following
cases:

(1) For a register which is not used at all in a subroutine. (For example, the
subroutine MULT of section 39 does not use the Y register.)

(2) When a subroutine returns data (that is, exits with data in a register). The
subroutine MULT, for example, is enteréd with two quantities to be mul-
tiplied in A and X and returns their product in A and X, so that A and X
must not be restored to their initial values.

(3) When the calling program assumes that a given register has been des-
troyed. This happens quite often with RDKEY; if a calltoRDKEY isina
loop, for example, the loop index i is kept in memory and decremented
there (with DEC i). :

On some computers (other than the 6502), every subroutine always saves and
restores all the registers. Note, however, that data cannot be returned in regis-
ters if this is done. ' ' :

Saving and restoring is often done in the middle of a program. With only
three basic registers to work with, sometimes a program will run out of registers
to use. If you need the X register, but the X register is already in use, save it
(with STX TEMP); then use it; then restore it (with LDX TEMP). We should,
of course, always consider alternatives to using registers, such as keeping a loop
index in memory, as in point (3) above, and likewise shifting bytes in memory
instead of in the A register. ' '

If there is a register free, it can often be used for saving and restoring. Sup-
pose we need to do a calculation in the A register, but there is something in the
A register now which we will need later on. If the X register is free, we can
save the A register there, with TAX, and restore it later with TXA. This is the
fastest method of saving and restoring, whenever it is applicable. (See, for
example, the final program of section 34.)

We say that a subroutine preserves a register if the contents of that register
are the same at the end of that subroutine as they were at the beginning. This
may be because the register was saved and restored, or simply because it was
never used in the subroutine. Further examples of subroutines which do not
preserve the registers include GETLNZ, of section 25 (and GETLN, of the
exercises in that section), as well as the input and output conversion routines
DECI, DECO, and DECOZ described in section 41.

EXERCISES

1. Consider the subroutine DIV of section 40. Should this subroutine save
and restore any of the A, X, and Y registers? Why or why not?
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*2.

Saved and Restored Variables

We have seen in section 39 that RTS in 6502 assembly language is like
RETURN in BASIC or FORTRAN. There can be several RETURN state-
ments, in a BASIC or FORTRAN program. Similarly, there can be several

_RTS instructions in a 6502 program; but this is unlikely if the A, X, and Y

registers are all saved and restored. Why? (Hint: consider saving space.)

Consider the following subroutine:

CALC BIT
BPL
STA
LDA
SEC
SBC
STA

LDA

CALCX RTS

CALCX
TEMP
#10

Q
Q
TEMP

*(a) CALC sets Q equal to f(Q), for what well-known function f?
(b) When CALC is called, are the values of the A, X, and Y registers in
the calling program preserved, whether Q was originally positive or
negative? Why or why not?



58. RETURN ADDRESSES AND
INDIRECT JUMPS

We have talked briefly about the JSR instruction (Jump to Subroutine, sec-
tion 25) and the RTS instruction (Return from Subroutine, section 39). It is time
to find out how they work. The basic idea which we must know about is that of
a return address.

Consider Figure 18. Here we have a program P1, which calls a program P2 in
three places. (The program P1 might be the main program, but it also might
be another subroutine; we refer to it as the calling program, or the program
that calls the subroutine P2.)

P P2

CALI: P2/

CALL P2

[/

BN

Y+ —RETURN

CALL P2

Figure 18. Calling a Subroutine More Than Once.

The call statement (JSR P2 on the 6502) clearly jumps, or branches, to P2.
The return statement (RTS on the 6502) also jumps; but where does it jump?
The first time that P2 is called, the return statement jumps to . The second
time, it jumps to B; while the third time, it jumps to .
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How can we have a single instruction that can jump to any of three places?
The answer involves the design of the call instruction, which not only jumps,
but also calculates, and stores somewhere in memory, the return address. This
is the ‘address of the next instruction after the JSR. The first time that P2 is
called, the return address is a. The second time, it is 8; the third time, it is .

The return instruction now jumps to the return address, as this address is
stored in memory. So, the first time, RTS would jump to «; the second time, it
would jump to 3; and, the third time, it would jump to v, exactly as we wanted.

The next question is where fo store the return address. Different computers
have different answers to this question.

Some computers, such as the IBM 4300 series (and the older IBM 360 and
370), store the return address, not in memory at all, but in a register. The return
instruction then returns to the address kept in this register. It is an indexed jump;

-it is as if we had JMP T,X in addition to LDA T,X on the 6502 (except that T

would be zero in this case; we would add zero to the contents of the X register,
and jump to the resulting location).

The 6502 does not have such an instruction, partly because the X and Y
registers ‘are only 8 bits long. Many other computers, however, have instruc-
tions like this:

Other older computers, such as the CDC 6000 series (made by Control Data
Corporation), store the return address for a subroutine P2 at the beginning of
P2. The return instruction from P2 then jumps to the address stored at the begin-
ning of P2.

It is interesting to note that the 6502 does have an instruction which jumps to an
address stored at a given location P2; it is JMP (P2) (the parentheses must be
there). Thig is an indirect jump; it is said to use indirect addressing (which will be
taken up further in sections 75 and 76). The address must be stored at P2 and
P2 +11,* with bytes reversed as usual.

Suppose, for the moment, that we wanted to use this instruction to end a sub-
routine. When we called the subroutine, we would have to store the return
address at P2. Suppose the return address is CONT; then we would load the lower
half of CONT arid store it at P2, and then load the upper half of CONT and store it
at P2+!1. This may be done as follows, using another feature of LISA:

LDA #CONT ; MOVE ADDRESS OF CONT
STA P2 ; TO B (LOWER HALF)
LDA /CONT ; MOVE ADDRESS OF CONT
STA P2+!'1 ;  TO B (UPPER HALF)

*The calculation of P2 + !l involves a 6502 hardware bug when the address of P2 is of the form $abFF;
the calculated result will be $ab00 rather than $ac00, where ac = ab+1.
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For any address (or other 16-bit constant) J, #J denotes its right half and /J
denotes its left half, in instructions which make reference to a constant. Oof
course, if T is an 8-bit unsigned constant, it can be thought of as a 16-bit con-
stant whose left half is zero and whose right half is J itself; this is denoted by #1J
(as we have already seen). Note that /J, like #J, makes the instruction contain-
ing it into a fwo-byte (immediate data) instruction.

RTS, on the other hand, works in a different way. In fact, JSR stores the
return address in a data structure known as a stack; and RTS gets the return
address back out of the stack, and jumps to it. This method of keeping return
addresses represents an advance by the 6502 (4and other microcomputers), and,
as we shall see, saves considerable time and space. In order to uhderstand it
more fully, we need some basic information about stacks.

EXERCISES

1. Suppose we did not have the instructions JSR and RTS on the 6502, and
that, instead of calculating a return address and storing it in P2, as in the
text, we called a subroutine with a code in the A register (1, 2, 3, etc.),
indicating where the call took place. What does the subroutine need to do
now, in order to return properly? Write out a sequence of instructions that
might be used in this case, assuming four return addresses, ALPHA,
BETA, GAMMA, and DELTA, and four codes, 1, 2, 3, and 4. (Note that
the subroutine will probably be using the A register for its own purposes.)

*2  In BASIC, there is a statement

ON v GOTO n,, n., ns, . . .

which goes to n; if v = 1; to n, if v = 2; and so on. Suppose that you
have a table of the addresses of n, n,, and so on, arranged as a serial
array JTABLE of two-byte quantities. Write a sequence of instructions on
the 6502 which implements the above GO TO statement, assuming that v
is in the A register.* (Ignore the possibility that v may be too large, or
may be negative. Check to make sure you have the right offsets; see sec-
tion 32.)

3. Suppose you are calculating M = 15000/N by writing a program that calls
DIV (from section 40). How is the process of writing this program made
easier by using the / operator in LISA?

*For example, suppose that the A register contains 2. Then you want to go to n,. The address of n, will
be the second address in JTABLE; and your program, in this case, must take this address, move it to
some other position (both bytes of it), and then do an indirect jump to this other position (callitIA). This
will go to n, because it goes to the place whose address is currently at IA.




59. STACKS

L We shall first learn about stacks in general, and then take up the specific hard-
@ ware stack used in the 6502.
Lo " In the simplest applications—which are all we shall ever be concerned with,
‘ in this book—a stack is an array of variable size. Suppose we call our stack H
and its size X. Then the elements of H can be considered as ranging from H(0)
through H(X—1). .

We can increase the size of the stack by setting H(X) to some quantity A, and
then'adding 1 to X. This is talled pushing A onto the stack. (See Figure 19.)
! ; We can decrease the size of the stack by subtracting 1 from X. After we do
; ! . this, H(X)'is usually moved back to A again. This is generally called popping
: A from the stack.- On the 6502, it is known, more logically, as pulling (the
f opposite of pushing).

Both pushing and pulling can be done in BASIC:

; HX) = A X = X-1
| X = X+1 A = HX)
| Pushing A Pulling A

or in 6502 agsembly language, using the A and X registers:

STA H, X DEX
INX LDA H,X
Pushing A Pulling A

/

Every stack has a certain maximum size, which we shall call max, and we
always have X < max. On the 6502, we normally have max = 256, so that
X <256 or X = 255—the largest permissible unsigned value of the X register
under any conditions.

Now suppose that we have just pushed P3, P2, and P1, in that order, onto the
stack. We say that P1 is at the fop of the stack; P2 is the second element down,
in the stack, and P3 is the third element down. Using what we have learned
about offsets, we may note that
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| H(X) !
______ H{newX-1)
H{X~-1) H (X-1) H (new X - 2)
Add- || to X =
H(0) H (0) H (0)
PUSHING
TO A
ey
— \\
- \\\i\“j/
AN
-
H(X-1) H (new X)

Subtract | |

H ( new X- 1)

H (new X—1)

from X-»

H(0)

LDA H—11,X
LDA H-!2;X
LDA H—-13,X

PULLING

Figure 19. Pushing and Pulling.

and, in general, LDA H—!1,X loads the nth element down.

The presence of minus signs in the instructions above leads to the idea of
upside-down stacks. In an upside-down stack called H, the bytes are not H(0),
H(), H(2), and so on, as above; instead, they are H(max—1), H(max—2),
H(max—3), and so on down to H(X+1), with H(X) still the element above the

loads P1 (the top of the stack);
loads P2 (the second element down);
loads P3 (the third element down);
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top of the stack. Thus X is no longer the size of the stack. Instead, the size is z,
where max —z = X+1 (or z=max—(X+1)=max—1-X). On the 6502, if
max = 256, we have z = 255—X; in other words, the size of the stack is the
ones’ complement of what is in the X register (see section 7).

Pushing and pulling would now be done as follows:

STA H,X INX
DEX LDA H,X
Pushing A Pulling A

and if P3, P2, and P1 are pushed on such a stack, as above, then

LDA H+!1,X . loads Pl (the top of the stack);
LDA H+12,X loads P2 (the second element down);
LDA H+!3,X, loads P3 (the third element down);

and, in general, LDA H+!n,X loads the nth element down, and the minus signs
have been replaced by plus signs.

Stacks can be used for saving and restoring. If we save several quantities by
pushing them onto a stack, we can restore them later by pulling them from the
stack.

Note that, when we pull something from a stack, there is no need to set the
quantity at the top of the stack to zero (or any other special value). This is
because, after pulling, this quantity will be above the top of the stack, and so its
value will not matter. At some later time, the stack may become larger again;
but, when this happens, a new value will be pushed into this quantity anyway.

The origin of the terms ‘pushing’’ and *‘popping™ is interesting. They were
first used by scientists at the RAND Corporation, near Los Angeles, where the
cafeteria has a ““well’’ for holding plates. When you took a plate off the top, the
next one would pop up from inside the well. Every so often the cafeteria worker
would come by with a stack of clean plates and push them down into the well.
(In German computing literature, a stack is called a Keller, which means base-
ment. Pushing and popping are apparently compared to throwing potatoes into
the cellar and pulling them back out again!)

EXERCISES

*1. Modify the BASIC program of this section for pulling A from a stack H, so
that it goes to 799 if there is nothing to pull—that is, if the stack is empty, or
has no elements in it. (If the stack becomes empty, in the process of pulling
A, do not go to 799.) Should this test be made before the two given BASIC
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statements, or after them? Why? (Hint: check carefully what happens when
X=0)

Modify the BASIC program of this section for pushing A onto a stack H, so
that it goes to 899 if there is no room on the stack for what is being pushed—
that is, if the stack is full, or has its maximum number of elements. (If the
stack becomes full, in the process of pushing A, do not go to 899.) Assume
that H is defined in BASIC by DIM H(r) and that this defines elements H(0)
through H(n). Should this test be made before the two given BASIC state-
ments, or after them? Why? (Hint: check carefully what happens when
X = n.) i

Suppose that the elements of a stack H are considered as ranging from
H(1) through H(X), rather than from H(0) through H(X—1). How does
this affect the pushing and pulling statements in BASIC? Formulate these
in the simplest way (hint: what happens when you interchange the order of
the two statements?). Ignore the checking for full and empty stacks sug-
gested by the preceding two exercises. (The answer will indicate how
pushing and pulling are in fact most often done in algebraic languages
such as BASIC.)




60. STACK-ORIENTED INSTRUCTIONS

We shall now complete the explanation of how JSR and RTS work, and introduce

. four new instructions and one new register on the 6502.

The hardware stack of the 6502 is an upside-down stack, as described in the
preceding section, having the fixed addresses 0100 through O1FF. It is associated
with a special 8-bit register called the stack pointer. This is the register S which
appeared in the stepping displays described in section 47.

The instruction PHA (Push A) pushes the A register onto the hardware stack.
It does this by storing the A register in location 0100+S and then decrementing
S. This is exactly what we did at the end of the last section, except that the stack
pointer’S replaces the X register.

The instraction PLA (Pull A) pulls the A register from the hardware stack, by
incrementing S and then loading A from location 0100+S. Again, this is the
same as before but with S taking the role of X.

Finally, JSR pushes, onto the hardware stack, the refurn address (minus one,
to simplify hardware operations); and RTS pulls this back from the stack (and
adds 1 back onto it), and goes to the resulting return address. Since addresses
are 16-bit quantities, JSR pushes two bytes (the high-order byte first, so that the
two bytes will appear in memory, as usual, with bytes reversed), while RTS pulls
two bytes.*

The instructions PHA and PLA may be used for saving and restoring the A
register. The X and Y registers may be saved by moving them to the A register
first, and restored by moving them back. If we want to save all three registers
A, X, and Y, we can write

/

*As an example, suppose that there are three bytes on the stack. Then these are in cells O1FF, O1FE,
and O1FD, and the stack pointer contains FC. If cells 08B4, 08B5, and 08B6 contain the three bytes
of the instruction JSR «, then the next instruction after this JSR starts in cell 08B7, so that 08B7 is
the return address. If this JSR is now done, there will be five bytes on the stack, in cells 01FF, O1FE,
01FD, 01FC, and 01FB, and the stack pointer will be set to FA. The two new bytes on the stack are
08 (in cell 01FC) and B6 (in cell 01FB), because 08B6 is the return address (08B7, as above) minus
one. If an RTS is now done, this 08B6 is pulled from the stack, and a jump is made to 08B6+1 or
08B7 (the return address); there are now three bytes on the stack, as before, so that the stack pointer
is set to FC. (Note that this is FC, not 01FC; the stack pointer is 8 bits long.)
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PHA ; SAVE THE A REGISTER
TXA ; MOVE X TO A
PHA : (THIS SAVES THE X REGISTER)
TYA ; MOVE Y TO A
PHA : (THIS SAVES THE Y REGISTER)

at the beginning of the subroutine, and

PLA ; RESTORE THE Y REGISTER
TAY ; MOVE IT BACK TO Y

PLA ; RESTORE THE X REGISTER
TAX : MOVE IT BACK TO X

PLA :

203

; RESTORE THE A REGISTER

at the end of the subroutine, just before RTS.

Note that if we save A, X, and Y, in that order, then Y will be at the top of
the stack. When we restore, we must restore Y first; then X, and then A. In gen-
eral, if we save several quantities by pushing them, and restore them by pulling
them, they have to be pulled in the reverse order of pushing.

Stack-oriented call and return instructions such as JSR and RTS may be used
directly in case there is more than one level of subroutine. Consider Figure 20,
where we have a program P1 that calls a subroutine P2, and P2 itself calls a sub-
routine P3. The order of events here is as follows:

(1) P1 calls P2, and o (minus one) is pushed on the stack.

(2) P2 calls P3, and B (minus one) is pushed on the stack.

(3) P3 returns to P2. A return address is pulled from the stack, and this is 3,
because 3 is now at the top of the stack.

(4) P2 continues, after the call to P3, and then returns to P1. This time the
return address which is pulled is o.

The same method works if there are four or more subroutines, each of which
calls the next. Note that the return addresses are pulled in reverse order from the
order in which they were pushed-—and that this is exactly the order in which
they are needed.

The instruction TSX moves the stack pointer to the X register. Once this has
been done, then the instruction

loads the top of the -stack;
loads the second element down,;
loads the third element down;

LDA STACK+!'1,X
LDA STACK+!2,X
LDA STACK+1!3,X

and so on, where STACK EQU $0100 has been specified.
The instruction TXS moves the X register to the stack pointer. “This is the
only way to load the stack pointer; typically, one loads a constant into the X
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register and then does a TXS. The user of a system such as that of the APPLE
should not do this, however, since the system keeps track of the stack pointer
itself., One exception to this is in decrementing the stack pointer without push-
ing anything onto the stack. The following sequence will do this:

TSX ; MOVE STACK POINTER TO X
DEX ; DECREASE IT BY 1 AND
TXS ; RESTORE STACK POINTER

This concludes our study of transfer instructions on the 6502. There are six of
‘them: TAX, TAY, TXA, TYA, TSX, and TXS.

P! P2 P3
i JSR P3
, B
E, JSR P2
: “
E‘ ‘ RTS RTS
X . i
ifr I ;
A
b
'S
; |
| S
EE ‘ ‘ JSR P2 JSR P3 RTS RTS
: E
: i .
STARY (Picalls P2) (P2calls P3) (P3returns) (P2 returns)
; B_(two Return
o bytes) to
] ‘ a_(two a_(two a,_(j_wg Return
J “ bytes) bytes) bytes toa
STACK STACK STACK STACK STACK

] | Figure 20. Two Levels of Subroutine Calls.
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EXERCISES
1. The contents of the cells with addresses 01F0 through 01F7 are:

ADDRESS  CONTENTS

01F0 82
01F1 1F
01F2 D6
01F3 4B
01F4 53
01F5 79
01F6 08
O1F7 EA

(a) If the stack pointer contains F3, give the new contents of the stack
pointer, and of the cells above, if-a JSR at the address 08C1 is
performed. :

*(b) If the stack pointer contains F4, give its new contents if RTS is
performed.

(c) To what address will the program jump if RTS is performed, with the
stack pointer containing F4? Show your work.

2. The contents of the registers A, X, and Y are 1, 2, and 3 respectively.
Give the new contents of the A register after each of the following
sequences of instructions:

*(a) TXA; PHA; TYA; PLA.
(b) PHA; TXA; PHA; PLA; PLA.
*(c) PHA; TXA; PHA; TYA; PHA; PLA; PLA.

3. Suppose that a programmer wished to save and restore the X register, inside
a subroutine, by using the instructions TXS and TSX. Would this work?
Why or why not?

PROBLEM 2 FOR COMPUTER SOLUTION
CHECKING AN ARRAY FOR DUPLICATIONS

Write a program to input several 8-bit quantities as decimal numbers, convert-
ing them with DECI, putting them into an array, and then checking to see
whether any two of the quantities in the array are the same.

The last decimal number which you input should be followed by two carriage
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returns. This is the way in which your program determines that there is no more
input.

If two of the quantities in the array are the same (say 7), your program should
type the message ‘‘n IS DUPLICATED’’; otherwise, ‘‘NO DUPLICATIONS”’
should be printed. (Do not have your program print out the quotation marks.)

Note that it is not necessary to determine whether more than one quantity is
duplicated. In the message ‘‘n IS DUPLICATED’’ the quantity n should be the
first duplicated quantity, if there are several.
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Subroutines are very common on rmcrocomputers even more so than on large
computers, because memory space is so ‘“‘tight’’ (that is, limited). Try not to
repeat any sequence of more than four instructions in an assembly language pro-
gram on a microcomputer; instead, make that sequence of instructions into a
subroutine, and call it twice (or more). '

Saving and restoring, in addition, are very common on the 6502, since it has
so few registers. (The IBM 4300 series computers, by contrast, have 16 general
purpose registers, not to mention the condition code, the floating point regis-
ters, and so on.) For both these reasons, it becomes imperative to know how to
use the stack and the S register.

Do not, by the way, confuse the S register with the S flag (the sign status
flag). The manufacturers of the 6502 refer to the S flag as the N flag, or the
negative status flag, for this reason. Most programmers refer to it as the sign
status flag, however, because other microcomputers (such as the Z-80) have
such a flag. In this section we will use S to mean the stack pointer excluswely

The bytes with addresses 0100, 0101, and so on, up through 0100+S, are
called available stack space. These bytes can be used for future quantities to be
put on the stack. The bytes with addresses 0100+S+1, 0100+S+2, and so on,
up through O1FF, are the bytes which are actually on the stack. The top of the
stack has address 0100+S+1.

The S register should have the same value, at the end of any subroutine, that
it does at the start of that subroutine. The bytes that are on the stack at the start
of the subroutine should be unchanged when that subroutine ends. These are the
two basic properties of the stack as it is used in subroutines.

If PHA, PLA, and TXS are not used, these properties will normally be
automatic. JSR decreases S by 2; RTS increases S by 2; so one JSR and one RTS
leave S unchanged. Also, JSR stores the return address (minus one) by pushing it,
and this does not affect any bytes that were on the stack before the JSR.

If PHA and PLA are used, the main point to remember is that everything that
is pushed must also be pulled, and under all conditions. Otherwise, the specifi-
cations above will be violated (and, also, the return address will be wrong,
when you do the RTS at the end of the subroutine).
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A very important use of PHA and PLA is for saving and restoring. In fact,
saving with STA TEMP and restoring with LDA TEMP is almost never neces-
sary. Instead, we save with PHA and restore with PLA. Note that this is one
cycle faster, and also saves four bytes, because PHA and PLA are one-byte
instructions, while STA TEMP and LDA TEMP are three-byte instructions.

The combination of STA TEMP and CMP TEMP may be replaced by PHA and
CMP $0100,X if you have previously done a TSX to put the stack pointer into the X
register. However, you must do a PLA later on, even through the result in the A
register is never used in your program (everything that is pushed must also be
pulled).

The same kind of trick may be used to replace STA TEMP and ADC TEMP
(or SBC TEMP, etc.). However, it is very often not worth the effort, because
the X register is tied up by the TSX. (Another replacement for STA TEMP, in
general, is discussed in section 80.) .

Another very common trick in assembly language programming concerns a
subroutine (call it P) which calls another subroutine (call it Q) and immediately
returns. The ,two instructions JSR Q and RTS may be replaced by the single
instruction JMP Q in this case. (The eventual return from Q, by RTS, serves
here as the return from P.) : :

Still another common trick is often used when a subroutine ‘“‘ends in the
middle’’—that is, when the last instruction of the subroutine is a JMP, which
goes back to some internal loop, and there is a conditional branch, in the sub-
routine, to an RTS. In this case the conditional branch can easily go to the RTS
of the next subroutine; and this subroutine might not need its own RTS at all,
thus saving one instruction byte. (The instruction BNE DONE in the program
of section 42 i§ an example of this.)

Stack overflow—the use of more than 256 bytes on the stack—is very
uncommon on the 6502. Normally, in fact, we do not check for it. This causes
no harm, since the stack will never overflow into any cells other than those with
addresses 0100 through O1FF. (If the top of the stack is at cell 0100, and a byte
is pushed into this,cell, so that the stack becomes completely full, the stack
pointer changes from 00 to FF. The next bytes would go in cells O1FF, O1FE,
and so on.)

If you wish to test for stack overflow after pushing, or for the stack’s being
empty after pulling, you can do a TSX followed by CPX #$FF (note that the
stack pointer contains hexadecimal FF when the stack is either full or empty). If
you are in a subroutine, remember that the stack cannot be empty, since it will
contain at least the, return address.

EXERCISES

*]. Give a BASIC statement which corresponds to the following sequence of
instructions:
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*3.

PHA

SEC

SBC J
TAX

PLA

CLC

ADC T,X
STA K

(Here the array T starts from T(0).)

Give a sequence of instructions, not involving RTS, that is equivalent to
RTS. (That is, it pulls two bytes from the stack, adds one to the 16-bit
result, and jumps to that location.)

What improvement in the subroutine

KSUBR JSR  KINPUT

JSR  KCALC
JSR  KOUT
RTS

is suggested by the text?




62. AN INPUT CONVERSION
PROGRAM

We shall now give two detailed examples of the use of the hardware stack.
These are the input and output conversion programs mentioned in section 41.

The input conversion program is shown in Figure 21. It uses the following
method (like that of section 33):

1. Set N to zero.
2. Read a digit D. If the next character is not a digit, stop; N is the answer.
3. SetN'= 10*N+D and go back to step 2.

For exarnple let the input characters be ‘“125+"’. Then the successive values
of N are:

(1) zero;

(2) 10%0+1, or 1;

(3) 10%1+2, or 12;

(4) 10%12+5, or 125.
r

The multiplication by 10 is done as in section 33, except that 16-bit quantities
are being multiplied. Therefore, 16-bit addition is done as in section 15, and
16-bit shifting is done as in section 34. Conversion of each character from char-
acter code form to integer form is done as in section 33.

There is only one PHA instruction in this program. In keeping with the rule
that everything pushed must be pulled, let us see where the A register is pulled.
Three instructions after the PHA, there is a BCS. If this branches to DECIB,
there is a pull (PLA) at that point. Otherwise, the PLA is two instructions past
the BCS. Note that the PLA at DECIB has no purpose, in this case, other than
to pull what was pushed.

Notice also the subroutine that starts at DECI4, to multiply N by two and
check for overflow. If there is overflow, we want to exit from DECI since we
cannot proceed further, but note that there are now two return addresses on the
stack—one was put there when we entered DECI, and the other was put there
when we entered DECI4.
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(I Since we want to exit from DECI4 and from DECI, we must pull the DECI4
‘ ‘ return address before doing an RTS. This is done in the two PLA instructions
just before DECIS. (Note that two bytes must be pulled, in order to pull an
address.) The same technique may be used whenever you wish to exit from
more than one level of subroutine.

Many further techniques are used in this program. The subroutines DECI and
DECI4 both exit with carry clear, unless overflow takes place. For DECI, this is
due to the CLC instruction; for DECI4, the branch at BCC DECIS is taken when
there is no overflow, so the carry must be clear. This fact is used to justify not
! having a CLC before the first ADC; the carry is already clear.

; 1 As the program proceeds, the intermediate results are kept in many different
| places, to save time. AS an example, consider the instructions STA DECI8 and

LDY DECI6. These two instructions move a 16-bit quantity from one place

(DECI6 and the A register) to another (the Y register and DECIS).

The RTS at DECIS is shared between the subroutine at DECI4 and DECI itself
(see the earlier BCS DECIB), as suggested at the end of the preceding section.
Also note the TYA followed by TAX; to move a quantity from Y to X takes two
instructions, since there is 'no instruction TYX (unfortunately) on the 6502,

Always remémber, when using DECI, that it uses the registers for its own

. purposes, and does not save and restore them. The same is true of DECO and

DECQOZ, introduced in the next section.

‘We may note that the temporary variables in this program are called DECI6
and DECIS, rather than (say) TEMP1 and TEMP2. This sort of thing is quite
common in programs, such as DECI, which are written to be included in other
programs. If DECI used a variable called TEMPI, there might be trouble if it were
included in-a program which also used a variable called TEMPI. For one thing, the
label TEMP1 would occur twice, which is an assembly error. Even if this were
fixed, there would still be trouble if the other program stored something (call it z) in
TEMP1, then called DECI, and then expected TEMPI to still contain z, instead of
what DECI had left there.

v

EXERCISES

1. In Figure 21, suppose that the PHA instruction had occurred before one or
more of the JSR DECI4 instructions. What further change would this
require in the error exit (through DECIB) from DECI4?

2. *(a) Suppose we have three subroutines P, Q, and R such that P calls Q
and Q calls R. None of the subroutines uses PHA or PLA. Suppose
now that, inside R, there is an error exit which returns to P. What must
be done in the error exit to condition the stack properly for this return?
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(b) Suppose that the error exit, above, returns to the subroutine that called
P. What must be done in the error exit now?

3. *(a) In Figure 21, why is there no CLC before the second ADC?

(b) Four instructions after DECIA, there is a branch to DECI3 on carry
clear. If this branch is taken, the carry is clear. Why, then, is the CL.C
needed, three instructions later?

*(c) Why is an SEC not needed just before the RTS that 1mmed1ately pre-
cedes DECI3, since we need the carry to be set at this point?




63. AN OUTPUT CONVERSION
PROGRAM

The output conversion program of section 41 is shown in Figure 22. It starts by
dividing the given number by 10000, and obtaining a quotient Q and a
remainder R. Note that, for example, 23456 divided by 10000 is 2, with
remainder 3456. In general, the quotient will be the first digit, and the
remainder will be the original number with the first digit removed.

Thie process above is then repeated three more times, dividing by 1000, by
100, and by, 10. Four digits are obtained and printed out. At the end, the fifth
digit, which is the remainder upon dividing by 10, is printed out.

We divide by using repeated subtraction. To divide by M by N in this way,

- we do the following steps (as in section 37):

1. SetQ= —1.

2. Add1to Q.

3. Subtract N from M.

4. If the result is non-negative, go back to step 2.
5. Add N to M, producing the remainder R.

For example, if M is 26, and N is 10, the values of Q and M go through the
following stages: :

(1) Qis —1, and M is 26.

(2) Qis 0, and M is 16.

(3) Qis1,and Mis 6.

(4) Qis 2 and M is —4; and we add 10 to M again, producing the remainder
R = 6 (and the quotient Q is 2, which is correct).

The 16-bit subtraction uses the technique of section 17; the 16-bit addition
uses the technique of section 15. Adding 1 to the quotient, as discussed above,
is done directly in memory, as suggested near the end of section 57 (for loop
counts). The constants 10, 100, 1000, and 10000 are kept in two parallel arrays
of two-byte quantities, as studied in section 32. These use BYT, as studied in
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section 26, and a new constant declaration, HBY, or ‘‘high-order byte.” Recall
from section 26 that if we write BYT 1000 (for example), we will get a single byte
consisting of the rightmost eight bits of the constant 1000. Writing HBY 1000 now
gives us the leftmost eight bits of this same constant.

(There is also ADR, or ““address,”’ not used in DECO, which gives us an entire
16-bit constant with bytes reversed, as they would be in an address. Thus ADR n
s the same as BYT n followed by HBY n.* Note that ADR n always gives two
bytes, even if n<256, in which case the second of these two bytes is 7€10.)

Students very often tend to confuse BYT with EQU, and you should pause at
this point to make sure you understand the differénce. If we write N BYT !100 in
our program, then LDA N loads 100; LDA #N would load the rightmost eight bits
of the address of N, and is not often used. On the other hand, if we write N EQU
1100 then LDA #N loads 100, while LDA N loads the contents of the byte with
address 100. This is because LDA #N is the same as LDA #1100, while LDA N is
the same as LDA !100. In both cases, !100 can be directly substituted for N in the
instruction, because N is equivalent to !100—which is basically what N EQU !'100
means. Note that you cannot set N EQU # !100—this is not allowed. Also, NBYT
1100 puts a byte of data in the program, and is normally given in the data section,
whereas N EQU 100 does not put any data in the program, and can go anywhere,
intermixed with anything else.

The program DECO uses the byte at the top of the stack to keep a partial
result—in this case, the left half of M, as above. This is pulled, subtracted, and
then pushed again, using the sequence PLA-SBC-PHA. Later, it is pulled,
added, and pushed again, using the sequence PLA-ADC-PHA.

If the top of the stack contains a partial result, this must be initialized by a
push instruction. This is done at DECO; the initial contents of A are the upper
half of the number to be converted. Note that DECOZ does this before calling
CROUT, which destroys the contents of A (but not of XorY).

What is pushed must also be pulled; and so the PHA at the start of the pro-
gram must be ‘‘undone’’ with a PLA, in this case just before DECO5. To the
programmer who does not thoroughly understand stacks, this PLA looks quite
mysterious—it is just before the return, but DECO does not return anything, in
particular, in the A register. The PLA does nothing but adjust the stack pointer
so that the RTS will get the proper return address.

DECO does not print leading zeroes (see the end of section 3). Instead of
00614, it prints 614; instead of 00207, it prints 207 (Note that zeroes which are

*In LISA 2.5, you can write ADR i, j, k, ..., which is the same as writing ADR i followed by
ADR ; followed by ADR k (and so on); also, there is another constant declaration, DBY, which is
exactly like ADR except that the bytes are not reversed. Thus DBY (**double byte’’) n is the same as
HBY n followed by BYT n. Finally, there is .DA (.DA #nlike BYT n; DA /nislike HBY n;and .DA v
is like ADR v if v is not preceded by # or /).
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not leading, such as the zero in 207, are printed.) The only exception to this rule
is the number 0, which prints as 0. DECO keeps a leading-zero flag, DECO9,

which becomes non-zero as soon as a non-zero digit is encountered. As long as
DECO9 is zero, no digits that are zero will be printed. (The choice of name of
the flag DECO9 resembles that of the temporary locations DECI6 and DECIS in
the precedmg section.) Note that the single instruction INC DECQ9 sets
DECO9 to a non-zero value.

EXERCISES

1. (@In Flgure 22, why is the SEC just before DECO2 not included in the
DECO?2 loop?
“*(b) Why is there no CLC before the first ADC?

(c) At DECO3, it is noted that the carry is always set, so that ADC
#0”" —!1 actually adds the character “‘0”” to the A register. The rea-
son that the carry is always set is that the preceding ADC was the last
instruction that affected the carry; and this instruction always sets the

carry. Why? (Hint: Look carefully at the logic of this program.)

2. Suppose that N1 BYT !2 and N2 EQU !2 are specified in a program. Are
the following statements true or false?

*(a) ADC #N2 adds 2 (if the carry flag is clear) to the A register.
(b) SBC #N1 subtracts 2 (if the carry flag is set) from the A register.
*(c) CPY N2 compares the Y register with the number 2.

3. Suppose that, for some reason, a partial result kept on the stack and
updated with the sequence PLA-SBC-PHA did not need to be initialized.
We would still, in this case, require a PHA at the start of the subroutine,
and a PLA at the end. Why? (Hint: Consider the return address. Be
specific about what goes wrong, and why.)
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64. ADVANTAGES OF HARDWARE
STACKS

Why does the 6502 handle subroutine calls in such a seemingly complicated
way? Why not just use the same method that the IBM 4300 or CDC 6000 series
uses? The question is an important one, and deserves a detailed answer, which
we can most easily express by means of an example.

Figure 23 shows a typical darge program, consisting of a main program (S1)
and some subroutines, each of which is represented by a box. If one of these
programs calls another, this is represented, in the figure, by an arrow from the
first box to the second box. Thus, for example S1 calls the subroutine S2; S2
calls S3; and S3 calls S4.

The main program and the various subroutines are grouped into levels. The
first (or lowest) level consists of all the subroutines that do not call any other
subroutines. The second level consists of subroutines that call only first-level
subroutines. In the third level, a subroutine may call only those in levels 1 and
2; and so on.

Any program with a large number of subroutines may be diagrammed in this
way, so long as no program calls itself as a subroutine (either directly or
indirectly). The program of Figure 23 contains a main program and 39 subrou-
tines, but there are only four levels; and this is typical of programs of this
Kkind—the number of levels is considerably less than the number of subroutines.

Suppose now that every subroutine saves and restores the A, X, and Y regis-
ters. If we do not yse a stack, we need three bytes in every subroutine for this,
or a total of 39%3 = 117 bytes. If we use a stack, we need only three bytes for
each level (not counting the top level), for a total of 3%3 = 9 bytes.

Why is this? Every time a subroutine on the third level is called, three bytes
are pushed on the stack. When that subroutine returns, these bytes are pulled.
When the next subroutine on the third level is called, the same three bytes on
the stack are re-used. The same sort of thing happens on lower levels.

Similarly with return addresses, if we had a subroutine call instruction which
put the return address in a fixed place in memory (instead of on the stack), then
we would need one such fixed place (that is, two bytes) for every subroutine,
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for a total of 39%2 = 78 bytes.* With JSR, which pushes a return address on the
stack, we only need two bytes for each level (not counting the lowest level, this
time, because a lowest-level subroutine contains no JSR, by definition) or a
‘ total of 3%2 = 6 bytes.

The reason is much the same as before. Every time a subroutine on the third
level is called, the same two bytes are used for the return address, namely the
!‘ first two bytes on the stack. Again, as before, stack bytes are similarly re-used
y on lower levels.

Further space is saved because PHA and PLA are one-byte instructions. As
| we have seen, STA TEMP and LDA TEMP are three-byte instructions. The
H space savings in our example are typical; they become even greater when there
‘ are more subroutines, as happens quite commonly.

Still another advantage of hardware stacks has to do with writing a program
that calls itself as a subroutine; this is known-as a recursive program. Recursive
| programs are more common on large computers than on microcomputers, but it
1 is intéresting to note that a $tack, or its equivalent, must be used in such a pro-
o gram. If P calls P, which calls P, and so on, » times, then n_separate return

‘ addresses, at least (and normally saved and restored variables as well), must all
be on the stack at one time.

y EXERCISES

} ¥ 1. (a) In Figure 23, if each subroutine (including lowest level subroutines,
I but not the main program) saved the A, X, and Y registers by STA,
o STX, and STY, and loaded them by LDA, LDX, and LDY, how
mahy bytes do all these instruction codes take?

. (b) How many bytes would the corresponding instruction codes take if a
} ‘ stack were used? (Note that, in this case, the sequence PHA-TXA-
f PHA-TYA-PHA saves the A, X, and Y registers, while the sequence
PLA-TAY-PLA-TAX-PLA restores them. Also note that each sub-
routine, as in part (a) above, still has to contain these sequences.)

2. *(a) How many subroutine levels would it take, in Figure 23, to use up the
entire stack, assuming that PHA and PLA are not used? (Remember
that the lowest level subroutines do not use JSR.)

*Some computers have subroutine-call instructions which leave the return address in a register. This
register must now be saved and restored by every subroutine which is at neither the highest nor the
lowest level. In this case, 162 = 32 bytes would be used for this purpose, if the 6502 had such an
instruction.
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*3.

#(b) How many subroutine levels would it take to use up the entire stack if
each subroutine (including lowest level subroutines, but not the main
program) saved the A, X, and Y registers on the stack?

We have noted that any program with a large number of subroutines may
be diagrammed as in Figure 23, with each subroutine on some level, so
long as no program calls itself as a subroutine. Why is this last restriction
necessary? (Hint: Look carefully at the definition of subroutine levels.)




65.' BCD NUMBERS AND DECIMAL
MODE

In this section and the next three sections, we take up the last few instructions
on the 6502: CLD, SED, CLI, SEI, RTI, PHP, and PLP. We will then go on to
see how some of the instructions we studied earlier can be used in further ways.

'We have considered unsigned integers (ranging from 0 to 255, in one byte)
and signed integers (ranging from —128 to 127). There are also binary-coded
decimal, or BCD, numbers, which range from 0 to 99.*% A BCD number always
has two digits, and each digit is contained in four bits of the given byte. Thus the

bits 10010000 correspond to the BCD number 90, since the first digit (9) is 1001
in binary, while the second digit (0) is 0000 in binary. (The same bits, 10010000,
would represent the unsigned integer 144, or the signed integer —112.)

BCD numbers look like hexadecimal numbers and, in fact, can sometimes be
manipulated as such. Thus, for example, LDA #3825 loads hexadecimal 25, or
binary 00100101, into the A register, and then this acts like the BCD number
25. In general, BCD constants are always written as if they were hexadecimal
constants. (There are only 100 legal BCD numbers, and hexadecimal constants
such as 7C, F9, and BA do not correspond to any BCD number.)

Let us now consider adding two BCD numbers. If the A register contains
$25, as above, and we add another $25, we get $4A, or 01001010 in binary, but
if 25 is a BCD, or binary-coded decimal number, we want to get the answer 50
(as a BCD number, or binary 01010000). The way we do this is to use a flag
called the decimal mode flag.

Like the carry flag, the decimal mode flag can be set (to 1) or cleared (set to
zero) by means of instructions:

CLD Clear decimal mode flag
SED Set decimal mode flag

*On certain older computers, BCD refers to a character coding scheme, similar to ASCII, but encod-
ing each character'in six bits intead of eight.
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Normally, this flag is clear. When it is set, the instructions ADC and SBC add or
subtract BCD numbers and produce a BCD result. Note that this applies only to
ADC and SBC, not to increment, decrement, or shift instructions.

The carry flag works in the usual way when decimal mode is on (that is,
when the decimal mode flag is set). If the carry flag is set, then ADC adds an
extra 1 (as a BCD number). If the result 7 is less than 100 (in BCD), the carry
flag is cleared; otherwise, it is set, and the A register is set to ¥—100. Similarly,
if the carry flag is clear (indicating a borrow status), then SBC subtracts an
extra 1 (as a BCD number). If the result r is greater than or equal to zero, the
carry flag is set; otherwise, it is cleared (indicating borrow status) and the A
register is set to 7+100. ) :

The zero, sign, and overflow flags are not set in-usable ways by ADC and SBC
when the decimal mode is on.* You cannot add or subtract in decimal mode and
follow this with a BEQ, BNE, BPL, BMI, BVC, or BVS, for this reason.
Also, the A register is set, but not in a usable way (and computation is not
halted), if the two quantities being added in decimal mode with ADC, or sub-
tracted in decimal mode with SBC, ate not both valid BCD numbers.

If we subtract a decimal number # from zero, with the decimal mode on, we get
its tens' complement, or 100 —n. Signed decimal numbers can be represented in
tens’ complement notation, just as ordinary signed integers are represented in
twos’ complement notation. This, however, is very rare. )

Loop counts are almost never kept as BCD numbers. This is because a loop
count is normally changed with an increment or decrement instruction; as we
have seen, these instructions are not affected by decimal mode.

Two BCD numbers, however, may be compared, using CMP, CPX, or CPY.
This is true even though these three instructions are unaffected by decimal
mode. The reason is that the relations (‘‘less than,”” *‘greater than,”” and so on)
between the two 8-bit quantities remain the same whether these are treated as
ordinary unsigned numbers or as BCD numbers.

There are no instructions resembling BCC and BCS that test whether the dec-
imal mode flag is on or off. (This can be done indirectly, however; see sec-
tion 67.) Many programmers make it a practice to start all main programs with
CLD (Clear Decimal Mode), just in case the previous user of the machine left
the decimal mode on.

Note that a left shift, in decimal mode, does nor multiply by 2. If you want to
multiply a BCD number by 2, add it to itself, in decimal mode. (Four shifts to the
right, however, will divide a BCD number by 10.)

*For example, if A =99 (in BCD), then adding 1 sets A equal to zero, but it does not set the zero flag.
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EXERCISES

1.

Add the following BCD numbers with the decimal mode on, and also with
the decimal mode off. In each case, give both the BCD answer and the final
setting of the carry flag.

(a) 39 and 39
*(b) 77 and 76
(c) 92 and 94

" Subtract the following BCD numbers with the decimal mode on, and also

with the decimal mode off. In each case, give both the BCD answer and the
final setting of the carry flag.

© *(a) 61 minus 49

(b) 23 minus 58
*(¢) 14 minus 81

Suppose’ that the byte EIGHT contains the constant 8. Then the program
(executed with the decimal mode off)

DA K
LSR
BIT EIGHT
~ BEQ BETA
SEC
SBC  #!3

; BETA STA K
divides the BCD number K by two. How does it work? Explain in detail.
(Hint: If the BCD number is ab, consider two cases—where a is even and
where a is odd.) Specifically, why does the constant 3 appear in the SBC
instruction?




66. PACKED STRINGS

Why do we ise BCD numbers at all? The reason has to do with multi-digit BCD
numbers, and their use in devices, such as calculators, in which computation
with decimal digits is required. ' .
Consider a number with 8 decimal digits, such as 93,000,000. We cankeep this
number in 8 bytes, with one character code (fora digit) in each byte, as follows:

Or we can pack it into 4 bytes, with two digits (that is, one BCD number) in
each byte, as follows:

T T+ 1) T+2 T+13

10010011 | 00000000 | 00000000 | 00000000

s[3]o}o ololo]o

This is known as a packed string, in contrast to the unpacked string of the
preceding illustration. In general, an n-byte packed string consists of 2n decimal
digits, and these may be unpacked into a 2n-byte number, consisting of charac-
ter codes for digits. :

Suppose now that we wish to add two J-byte packed strings. Using decimal
mode, we can add them two digits at a time, from right to left—first the right-
most two digits of each string, then the next two, and so on. This takes advan-
tage of the fact that the carry flag is used and set by ADC to support multi-digit
addition whether the decimal mode flag is on or off.

Conversion of packed strings to unpacked form, or of unpacked strings to
packed form, is simple and fast. We merely convert one byte to two, or two
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bytes to one, and then repeat this J times, for I-byte packed strings. Conversion
of either packed or unpacked strings to binary (internal) form, however, or the
reverse, is much more time-consuming. We saw in sections 62 and 63 some
conversion routines of this kind; and these were restricted to two-byte quantities
in internal form. In the general, multi-byte case, the two-byte additions and sub-
tractions in these routines become multi-byte additions and subtractions, which
slows them down considerably.

This suggests to us why BCD numbers and packed strings are used. Con-
sider, for example, a calculator. It has a display consisting of decimal digits,
and a keyboard where numbers may be entered, also in decimal-digit form. It
also contains a microcomputer which can be directed to add the number
punched in at the keyboard to the contents of the display. If this were done in
internal binary form, the input number would have to be converted into this
form, and the answer would have to be coriverted back to a string of decimal
digits. It is much easier and faster to keep all numbers in the calculator as
packed strings, and to add them.in the way described above.

Note that a decimal number expressed in two bytes does not have these bytes
reversed; if the bytes are D and D+!1, then D is the high-order byte and D+!1
the low-order byte: The same is true, of course, for more than two bytes; the
first is always the high-order byte, and the last is the low-order byte.

Unpacked strings may also be ddded directly, but care must be taken. In
adding 5 and 7, for example, we are really adding their character codes, or BS
and B7 (hexadecimal). This may be done by subtracting BO from the second of
these codes, and then adding. If the result (BS+07=BC, in this case) is greater
than B9 (the character code for 9), then 10 is subtracted (resulting in B2, in this
case) and a carry preserved for the next addition, going from right to left.

EXERCISES

*1. Write a program to convert an unpacked string B, of length K, into the
corresponding packed string N. Assume that B DFS !100 and N DES !50
are used to define B and N, and that K (=< 100) is an even number. Use a
loop ending with DEX and BNE.

2. Write a program to print out a packed string of length M, using COUT.
Make sure that the character code for each digit (not the digit itself) is out-
put. Use a loop ending with INY, CPY M, and BNE.

*3. Write a program to add the J-byte number at N1 to the J-byte number at
N2, to produce a J-byte number at N3. (Remember that the bytes are not
reversed.)




67. THE STATUS REGISTER

There is one more régister on the 6502, called the status register. It is also
sometimes called the flag register, because it is nothing more than the various ‘
status flags, all combined into one register, as follows: . b

S|V B D | z c

We have already met the sign flag (S), the overflow flag (V), the decimal mode |
flag (D), the zero flag (Z), and the carry flag (C). The break flag (B) is set to 1 ‘\ i
whenever there is a break; the interrupt flag (Iyis discussed in the next section.

Other names for the status register are the program status word,* or the PSW, or |
simply the P register; it appears as the P register in the stepping displays (see 1
section 47). There are no transfer instructions on the 6502 which move the
P register (as we shall call it) to any of the other registers, or vice versa. Instead, the
P register can be pushed and pulled, justlike the A register. The instructions which
do this are: '

PHP Push P register (status register)
PLP Pull P register (status register)

The easiest way to move the P register to the A register is therefore PHP fol-
lowed by PLA. This can be reversed, by PHA followed by PLP, moving the A
register to the P register.

We have already seen that there is no single instruction which branches on
the setting of the decimal mode flag. It is possible to do this in four instructions,
however, as follows:

PHP ; MOVE P REGISTER INTO STACK
PLA ; AND THEN BACK TO A

AND #%00001000 ; LOOK AT ONLY THE FOURTH
BNE  ALPHA ;  BIT FROM THE RIGHT (D)

*This terminology is borrowed from IBM, although the program status word on IBM computers is
much larger, and contains much more information, than that of the 6502.
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This branches to ALPHA on decimal mode set. The same sort of thing could be
done with any of the other flags, of course, although it would not be necessary
in most cases.

The existence of the P register solves a tricky problem associated with deci-
mal mode. Suppose you have turned the decimal mode on for the purposes of 3
| subroutine. When the subroutine is finished, do you turn the decimal mode off
again? This depends on whether the calling program had the decimal mode on;
and you have no way of knowing this.

! One solution, of course, is to use the sequence of instructions above, at the
} start of the subroutine. This allows you to record the fact that the decimal mode
! was on (or off) and to take the proper action at the end of the subroutine: but a
‘ better method is just to save the P register, with PHP, at the start of the subrou-
tine and restore it, with PLP, at the end. Now you can turn decimal mode on
and off all you want to, inside the subroutiné.

PHP and PLP are also used to save and restore other flags. Suppose you have
i computed a value of the carry. flag which you will need later on in your pro-
‘ gram. In the meantime, though, you have to do some shifting, which will de-
stroy the carry flag. Save it with PHP; then shift; then restore it again with PLP.
P The same sort.of thing works with any other flag.

i During debugging, you can check the various flag settings by noting the P
‘ ‘ ' register contents in the stepping display. Suppose, for example, that you have

an instruction which is supposed to clear the overflow flag. If the line P=75
! appears in the stepping display after this instruction is executed, you have an
| } error. This is because 75 (hexadecimal) is 01110101, in binary; and, referring to
, ! the diagram above, we see that the overflow flag (V) is 1 in this case, being the
AR second bit from the left.

Sl
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EXERCISES

1. Give a single instruction on the 6502 which branches under the same condi-
tions as eacly'of the following:

- (a) PHP

. PLA

AND 4340

s BNE AILPHA .

*(b) ’ PHP
; PLA
| AND  #82

BEQ ALPHA
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*(a)

(b)

*(©)

PHP
PLA
AND
BNE

PHP
PLA
AND
PHA
PLP

PHP
PLA
ORA
PHA
PLP

PHP
PLA
AND
PHA
PLP

#$80
ATLPHA

#$BF

#38

#3$FE
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2. Give a single instruction on the 6502 which sets or clears a flag in a way
that is equivalent to each of the following:

3. A program starts with PHP followed by PHA, énd ends with PLP, PLA,
- and RTS, in that order. This is almost surely wrong. Why? (If this one is
not obvious, walk it through, as this was discussed in section 44.)




68. INTERRUPTS

{ There are times, while a program is running, that something happens which
! needs the computer’s immediate attention. This might be a keyboard input; or a
i disk operation; or a button pushed by a user who is playing a computer game; or
‘ an early warning signal that there is going to be a power failure in a millisecond
o or so. In any of these cases, the 6502 can be configured in such a way that an
.interrupt occurs in the program being run: When this happens, the computer

\ calls a special kind of subroutine, called an interrupt routine, which does what-
| ever is appropriate in the given situation. When the interrupt routine is fin-

T ished, the computer goes back to what it was doing before.

I There are three kinds of interrupts on the 6502. The first kind is called an

IRQ interrupt; the address of the corresponding interrupt routine is kept in cells
FFFE and FFEF (with bytes reversed). This means that when the user pushes a
L button, for example, the computer stops whatever it is doing, looks in cells
T FFFE and FFEF, in which there will be an address o, and calls the interrupt rou-
| - tine, which starts at address o. (JRQ simply means  ‘interrupt request.’’)
| The APPLE has its own IRQ interrupt routine, at an address which it keeps
i in cells FFFE and FFFF. You cannot change this address, because these two
At locations—and, indeed, all locations from C100 through FFFF—are reserved for
the APPLErsystem, and are normally in read-only memory, or ROM, which means
that they cannot be changed (see section 78 for a further discussion of ROM).
The APPLE’s IRQ interrupt routine calls a subroutine whose address is kept in
locations O3FE and O3FF; this is normally the address of still another APPLE
monitor routine, but you can change this address (because locations 03FE and
03FF are not in,ROM). This means that you can write your own interrupt rou-
tines on the APPLE, but you do not have to, and most programmers ordinarily
do not.

There is a basic difference between an ordinary subroutine and an interrupt
routine. After an ordinary subroutine returns, the contents of the registers may
be unchanged or not, depending on the programmer’s intentions. Many subrou-
tines do save and restore the registers, but, as we have seen, many others, such
as our MULT and DIV, do not. After an interrupt routine returns, however, the
contents of the registers—including the status flags—must be unchanged,
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because we have no way of knowing what the computer was doing when the
interrupt happened.

The subroutine call, made by the interrupt, itself pushes the status register,
exactly as if PHP had been done. There is then a new return instruction:

RTI Return from Interrupt

which pulls the status register and then does a subroutine return. Note that we
must use RTI, rather than PLP and RTS, to return from an interrupt subroutine;
this is because the return address, and not the return address minus one (as with
ISR), is pushed by the interrupt subroutine call. Therefore RTI does rot add one
to the pulled return address, as RTS does. ,

The entire interrupt system can be turned off, or disabled, by means of a
status flag, the interrupt status flag, whose values are 0 if the interrupt system is
on, and 1 if it is off. Two instructions set and clear the I flag, as this flag is
called:

CLI Clear I (Turn Interrupt System On)
SEI Set I (Turn Interrupt System Off)

The interrupt subroutine call furns the interrupt system off, exactly as if SEI had
been done. This is so the interrupt routine does not, itself, get interrupted.* This
is done after the P register is pushed, however; so when the RTI pulls the P
register, the interrupt system will be turned back on again, or enabled, since the
interrupt status flag (in the P register) is presumably equal to zero. (On many
microcomputers other than the 6502, you must do the equivalent of a CLI just
before returning from an interrupt subroutine.)

Some interrupt subroutines do not return (with RTI) at all. In particular,
pressing the reset key on the keyboard, as when getting out of an endless loop,
causes an interrupt; and the APPLE allows you to proceed with debugging at
this point, rather than doing an RTI, which would simply put you back in the
endless loop. Reset interrupts are the second kind of 6502 interrupts; the inter-
rupt subroutine address for them is in cells FFFC and FFFD.

There are interrupts that cannot be turned off, even by SEL. These are called
non-maskable interrupts, or NMI interrupts. This is the third kind of 6502
interrupt; the interrupt subroutine address for it is kept in cells FFFA and FFFB.
A power failure warning interrupt should be non-maskable; you want it to be able
to interrupt even another interrupt routine. The APPLE NMI interrupt routine calls
a subroutine whose address is kept in locations 03FC and 03FD; as with IRQ

*This is in contrast to some computers on which interrupt subroutines can get interrupted; specifi-
cally, each interrupt has a priority, and higher priority interrupts can interrupt lower-priority interrupt
subroutines.
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interrupts, this allows you, as an APPLE user, to write your own NMI interrupt
routine, although normally you would not do so.

B

EXERCISES

*1.

*3.

Suppose that the following quantities are contained in the stack of the
6502, with values giveri in hexadecimal:

ADDRESS  CONTENTS

01F0 Al
01F1 D4
.+ 01F2 .55
01F3 26
01F4 B1
01F5 3C
' 01F6 08
‘ 01F7 9E

The instruction LDA !0, at locations 0832 and 0833, is now executed,
after which the P register contains 31 and the S register contains F3. At
this point, an interrupt occurs. Give the new contents of the stack loca-
tions above, as well as the contents of the P and S registers, at the start of
the interrupt routine. Justify your answer. (Remember that the interrupt
system will be turned off, and this must be reflected in the new P register

contents.)

Suppose that locations 01F0 through 01F7 are as in the statement of exer-
cise 1 above, and that the P and S registers contain B7 and F3 respec-
tively. At this point, an RTI is executed. Give the new contents of the P
and S regiﬁters, and specify the address to which the RTI branches. Justify

your answer.

Suppose that a three-byte instruction at locations 08B0, 08B1, and 08B2
is executed. If an interrupt now occurs, the return address which is put
into the stack is not always 08B3. Why not?




69. INPUT INSTRUCTIONS

Every computer has instructions to perform input and output. On the APPLE,
all input-output is done by means of subroutines, such as RDKEY and COUT;
but we should know a little about the instructions which these subroutines use.

It is important to note that you will not, and cannot, be held responsible for
learning how to write input-output subroutines yourself on the 6502, until you
learn quite a bit about microcomputer hardware—far more than is given in this
book.* This is because the specific instructions used in such subroutines depend
on the way in which the 6502 is connected to.the keyboard, the screen, the
printer, and so on—and this varies, very widely, from one 6502-based system to
another. Thus the APPLE, the ATARI 800, and the VIC-20, for example, have
separate and different input-output subroutines, and each of these is found only on
its own particular system. We can only specify the general principles of input-
output on the 6502.

First of all, input-output on any microcomputer is normally done one character
at a time. If you want to input several characters (such as in a subroutine like
GETLNZ), you have to write a loop, containing instructions to read a single
character. (This is in contrast to the situation on many large computers in which
a single input instruction causes the input of an entire array.)

Reading a single character normally consists of the following steps:

(1) Test to see whether the person sitting at the keyboard has typed a new
character.

(2) If not, return to step 1.

(3) Read the new character.

Step 3 above is done by loading, into the A register, a location which we will
call INDATA (“input data”), that has a fixed address (just as the stack has the
fixed addresses 0100 through O1FF). The con_lputerT is wired in such a way that

*For a good reference on the hardware of the 6502, see L. Leventhal, 6502 Assembly Language
Programming, Berkeley: Osborne/McGraw-Hill, 1980.
'Not the APPLE. See the explanation on the following page.
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loading this particular address causes a new character to be input. (The
specific address can be wired in an arbitrary way, and varies from one 6502-
based system to another.)
5 Step 1 above is done by loading, into the A register, another location with a
i similar fixed address, which we will call INSTAT (‘‘input status’’). The com-
L puter is wired in such a way that loading this address causes the loading of the
‘ contents of a status register associated with the keyboard (do not confuse this
with the P register). One bit of this status register is the ready flag. When a new
character has been typed, the ready flag is set (by the circuitry of the
keyboard—not by your program). When the new character is read, as in step 3
above, the ready flag is cleared (again automatically—not by your program).
Finally, step 2 above is done with a bit test and branch (see section 52). Thus a
typical program to read a character might be;

IWAIT LDA  INSTAT : GET INPUT STATUS
AND  #%00000001 ; LOOK AT RIGHTMOST BIT
BEQ  IWAIT ; IF STILL 0, KEEP TRYING
) ILDA  INDATA ; IF 1, GET A CHARACTER

We emphasize, however, that this is only a fypical program, because many
- details can be different depending on how the given 6502 system is wired.
Among these are:

i (1) The specific locations of INSTAT and INDATA.

i (2) Which bit of INSTAT (in the above case, it is the rightmost bit) is the
" ready flag.

(3) Whether 1 means “‘ready’’ and O means ‘‘not ready’’ (as in the above
‘ example) or vice versa.

i‘ ‘ (4) Whether the scheme above is used at all. In another version of this scheme,
1 each character which is input is only seven bits long, and the eighth
(leftmost) bit is used as the ready flag. Here there is only one special
location in memory; if this is called INDATA, and the value 1, as before, in
the leftrnosf’ bit signifies a ready status, the instructions

IWAIT LDA INDATA ; GET BOTH DATA AND STATUS
BPL IWAIT ; PROCEED ONLY IF STATUS =1

perform the same function, in this context, as the preceding instructions
did in their context. This is the schemé used by the APPLE, where
INDATA is hexadecimal C000.

(5) Other hardware considerations of an arbitrary nature. On the APPLE, for
example, there is an operation called “‘clear keyboard strobe’” which
must take place immediately following the reading of any character. For
internal APPLE hardware reasons, BIT $C010 performs this function; it
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clears the sign bit of INDATA, so that it will signify ‘‘not ready’’ until
another key is pressed. Still another arrangement involves the ready
Status, not as a flag, but as an interrupt. When a new character is typed,
an interrupt occurs, as described in the preceding section. The interrupt
routine then reads a character and puts it in an array of characters to be
processed later by the program that is currently running.

Various other microcomputers, such as the Z-80, have separate instructions to
input a character. On the 6502, however, this is always done by wired-in load
instructions, as above—a scheme that is often known as memory-mapped input-
output. The use of ready flags, as above, is often referred to as handshaking.

EXERCISES

*1.

*2.

Expand the first sequence of input instructions given in this section into a
primitive version of GETLN, the APPLE monitor subroutine that gets a
line of input (including a terminating carriage return) and puts it in cells
0200 through 0200+n, where the line contains n characters plus the car-
riage return. (Ignore the fact that the actual GETLN subroutine in the
APPLE monitor allows for backspacing and retyping, and do not start by
outputting a carriage return, as GETLNZ does.)

Rewrite the first sequence of input instructions given in this section, so as
to save one byte. (Hint: Use a shift.)

(a) Suppose that, on the APPLE, the ready flag (the leftmost bit of
INDATA) were O for “‘ready’” and 1 for ‘‘not ready,’’ instead of the
reverse. In the instructions

IWAIT LDA INDATA ; GET BOTH DATA AND STATUS
BPL IWAIT ; PROCEED ONLY IF STATUS =1

we would then replace BPL by BMI. If we did this, what bug would
still remain in the given sequence? (Hint: See Tables 9 and 10 in the
Appendix.)

(b) How can this bug be fixed?




70. OUTPUT INSTRUCTIONS

There are many resemblances between input and output instructions on the

6502. Like input, output is done one character at a time. As with input, there
~ are no instructions on the 6502 that are exclusively used for output. Instead, an

output instruction is normally a store instruction that stores into a cell with a
‘ certain fixed address. _ )

P " The analogy between loading and storing, on the one hand, and input and
4 output, on the other, is an important one. In fact, in the study of computer hard-
I ware, loading a register is often called reading from memory, and storing a
IR register is often called writing into memory.
R - Let us consider, for a moment, output to a device such as a prmter Such a
| device always Has a certain maximum speed; for example, this might be 30
characters per second. Since ten bits are sent for each character (eight for the
character itself, and two more for synchronization purposes), this is 300 bits per
second, or 300 baud (named for Baudot, a French scientist, just as the vol is
named for Volta, and the farad for Faraday).

Thirty characters per second is one character every 34,100 cycles (since 34,100

; = 1,023,000/30, and there are 1,023,000 cycles per second, as we mentioned in
1 section 36). After one character is sent, the computer must wait 34,100 cycles to
1 . : send the next one.
‘ If the computer has nothing else to do, the easiest way to wait for 34,100 cycles
(or any other number) is with a wait loop. This is simply a loop that does nothing,
. over and over again. A typical wait loop on the 6502 is

‘ /LDA L ; SET THE COUNT
1 STA I ;1 EQUAL TO L
\ L1 IDA M ; SET THE COUNT
“ ‘ STA J ; J EQUAL TO M
\ L2 LDA N ; SET THE COUNT
. STA K ; K EQUAL TO N
L3 DEC K ; DO NOTHING BUT DECREASE
BNE L3 ;  THE COUNT AND LOOP BACK
DEC J ; DECREASE THE SECOND
BNE L2 ;  COUNT AND LOOP BACK
DEC I ; DECREASE THE FIRST
BNE L1 ;  COUNT AND LOOP BACK
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This waits for approximately 8+L*M=*N cycles (actually, 8*L#M=N +
15#L*M + 15+%L + 8 cycles). The value of this is 34,100 cycles if we take
L=12,M=6,and N = 57.

The APPLE monitor has a wait loop of its own. The instruction JSR WAIT
(where WAIT EQU SFCAS) waits for (26+27k+ 5k2)/2 cycles, where k is the
initial content of the A register. You can wait for slightly less than 34,100
cycles by loading the A register with 114 (decimal) and then calling WAIT.

Wait loops are not the only way to produce output in a timed way. Many out-
put devices will send a signal after the proper amount of time has gone by, and
they are ready to receive a new character. This signal goes into an output ready
flag in a status register. Output ready flags and input ready flags arise in com-
pletely different ways, but they are treated in exactly the same way by the pro-
grams that use them; you wait until the device is ready, and then either input
(by loading) or output (by storing). Thus, assuming that we have two special
locations ODATA and OSTAT (like INDATA and INSTAT of the preceding
section), and that the second bit from the right (this time) in OSTAT is the
ready flag, with the value 1 meaning *‘ready,’” we might proceed as follows:

OWAIT ILDA  OSTAT ; GET OUTPUT STATUS
AND #%00000010 ; LOOK AT 2ND BIT FROM RIGHT
BEQ OWAIT ; IF STILL 0, KEEP TRYING
STX  ODATA ; IF 1, OUTPUT A CHARACTER

where the character to be output is in the X register. As with input, the output
ready signal can, in more complex systems, cause an interrupt rather than set-
ting a flag.

When we have a loop in an assembly language program that is inside another
loop, which may be in turn (as in our wait loop above) inside still another loop,
and so on, these are called nested loops, just as in BASIC or FORTRAN.

Just as with input, the APPLE uses a non-standard scheme for output. The
characters to be output on the APPLE screen are placed in certain fixed memory
locations. The actual display of these characters on the APPLE screen is done
by a part of the APPLE computer system which is completely hidden from the
user. In practice, COUT and other such monitor subroutines place character
codes in the proper fixed memory cells.

EXERCISES

1. Under the conditions of the output sequence of instructions at the end of
this section, what is the shortest way of outputting a character in the A
register, if the X and Y registers are in use for other purposes? Illustrate
by writing a sequence of instructions. (Note that
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OWAIT LDA  OSTAT

AND #%00000010
! BEQ OWAIT
' STA  ODATA

will not work, because the STA will always store the final contents of
OSTAT, since this is loaded into the A register by LDA)

¥ In the wait loop of this section, how long does the loop wait if L., M, and
N are all zero? (Hint: There is a trick to this one, which can be widely
used in other situations. Walk the program through carefully if you do not
see the trick.) :

3. Modify the second input sequence of instructions of the preceding section,
so that it becomes an output sequence. Assume that the character to be
output is in the A register. (Note that the obvious modification, namely

! OWAIT LDA  ODATA
BPL  OWAIT
STA  ODATA

will not work. Why not?)

PROBLEM 3 FOR COMPUTER SOLUTION
16-BIT HEXADECIMAL CONVERSION

Write a prograx;l to input four hexadecimal digits, convert them to a 16-bit
quantity in memory, and output this quantity in decimal, using DECOZ (use
your copy of DECOZ from Problem 1).

The input should be done with GETLNZ. Remember that GETLNZ uses the
A, X, and Y registers for its own purposes.

If any of the four digits which you input is not the character code for a digit
(0 through 9) or A through F, your program should print out the message BAD
INPUT and try again.

After you output the converted number, loop back to read another hexadeci-
mal quantity. '




71. QUEUES AND POLLING

The real power of ready flags is that they can be used to support simultaneous
input, processing, and output. You can be typing characters; the computer can
be making calculations; and other characters can be dlsplayed or typed, all at
the same time.

When you type characters in, you might type them too fast for the computer
to use right away. It has to save them somewhere, and use them later. In the
same way, the computer might produce output characters too fast for the output
device (faster than 30 characters per second, for example); so these characters
have to be saved somewhere, and used later by the output device. Both these
problems may be solved by means of data structures known as gueues.

In a queue, you always want to put characters (or other data) into the queue in
a certain order and then use them, later, in that same order. The first character
to be put in is the first character to come out; this is abbreviated as First In, First
Out, or FIFO. This makes a queue different from a stack, for example. When
we put bytes on a stack in some order, we always remove them in the reverse
order, as we saw in section 60. The last character to be put in is the first charac-
ter to come out, in this case; this is abbreviated as Last In, First Out, or LIFO.*

Figure 24 shows how to implement a queue of characters as an array called
Q. This array has length m, and goes from Q(0) through Q(m—1). Characters
are put into the queue at the rear, and leave the queue at the front. (The meaning
of “‘queue’ is “‘a waiting line’’; you can think of people waiting for groceries,
or for tickets, and getting in line at the rear of the queue waiting for a while,
and then leaving at the front of the queue.)

If the queue of Figure 24 is an input queue, then characters (in this case the
message ALL THE WAY AROUND THE RING) are typed as input, inserted at
the rear of the queue in order, and then later used by the computer, by removing
them in this same order from the front of the queue. If this is an outpur queue,
then the computer outputs ALL. THE WAY AROUND THE RING into the rear

*There is also GIGO (Garbage In, Garbage Out), which is a computer version of Murphy’s Law. If
your input data are incorrect—*‘garbage’’—then the output you produce will also be garbage.
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of the queue; the output device (such as the printer) then displays these charac-
ters, in the same order, by removing them from the front of the queue.

This method of setting up a queue is often known as a ring buffer, or a circu-
lar array, because you can think of the array Q as endless—the next character
after Q(m —1) is Q(0). (The stack, on the 6502, is also a circular array, because the
stack pointer increments from $FF to zero, and decrements from zero to $FF)

We will now show how to do simultaneous input, processing, and output. Let
us first consider processing—that is, reading and writing characters, with sub-
routines ICHAR and OCHAR, which are analogous to RDKEY and COUT on
the APPLE. We have two queues, an input queue and an output queue. It should
be clear from Figure 24 that ICHAR removes one character from the front of the
input queue, while OCHAR inserts one character at the rear of the output queue.

For simultaneous input and output, there are two possibilities. One is to use
interrupts. When a character is typed, an interrupt occurs; the interrupt routine
(call it QIN) then inserts the new character at the rear of the input queve. Simi-
larly, when a character is printed and 1/30 of a second (for example) has gone
by, an interrupt occurs, and the interrupt routine (call it QOUT) removes one
character from the front of the output queue.

This kind of interrupt requires extra hardware, at extra cost, and there is
another way to do the same job without interrupts, using a technique called poli-
ing. This also involves QIN and QOUT; but this time, these are called by a polling
routine, which simulates what is done by the interrupt hardware.

A polling routine is a routine (call it POLL) that is called, at a high rate of
speed (normally, over 1000 times per second) by the program being executed.
Its purpose is to poll the ready flags, or test whether any of them 1s set. In this case,
there are two ready flags—one for input and one for output. If neither of the ready
flags is on, POLL simply exits. If the input ready flag is on, POLL calls QIN; if the
output ready flag is on, POLL calls QOUT.

In order for polling to work, it is essential that POLL be called ‘‘often
enough.”” There must never be any substantial period of time (half a second,
say) during which POLL is not called. Otherwise, for example, you could type
two characters during that period of time, and the first of these characters would
never be put into the input queue, because that can only be done by POLL.

The easiest way to implement POLL is to have it called, by the program
being executed (and by every one of its subroutines), at every labelled instruc-
tion. This works because there is always a very short period of time (a few
microseconds) between execution of labelled instructions. In particular, when-
ever a branch or a jump is taken, it goes to a labelled instruction, where there is
another call to POLL. Note that, almost all the time, POLL is very fast (since it

just checks two flags, finds neither of them set, and exits); so the calls to POLL .

do not slow processing down to any significant extent.
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EXERCISES

*1. A queue, like a stack, can be empty (that is, have no elements in it).
Describe the modifications which have to be made to ICHAR and QOuUT
to handle the case of an empty queue.

2. In Figure 24(a), the bytes of the queue appear to range from Q(FRONT)
through Q(REAR). However, they are often kept in Q(FRONT) through
Q(REAR—1) instead. Can you think of a good reason why? (Hint: Write

. asequence of instructions to test whether the queue is empty.)

i
»
|

*3. Just as there are upside-down stacks, so there are upside-down queues,
which may be thought of exactly as plctured in Figure 24 except that Q(0)
becomes Q(m), and Q(m—1) becomes Q(1). Can you think of a good rea-
son why a queue should be upside down? (Hint: Consider saving space
and time.)

|
|
i
| j
I
|
I




72. THE SPEAKER AND REAL-TIME
PROGRAMMING

The APPLE has another form of output, called the speaker, which will intro-
duce us to a new style of programming. The speaker is memory-mapped, like
all input-output on the APPLE it uses the special cell Wlth address $C030. We
usually write ,

SPKR EQU $C030

Unlike the case of character/ihput—output, however, any instruction (a load,

store, or whatever) which refers to SPKR will produce speaker output, which is -

a barely noticeable click. We can then, for example, produce a musical note as
a series of clicks. Let us learn how to do this.

There is a musical note known as A-440; on the piano, it is the A above middle
C. The designation A-440 means that anything which vibrates 440 times per sec-
ond will produce that particular note. What we will do is to make the APPLE pro-
duce a click on the speaker 440 times per second. This will be done as follows:

(1) Produce a click.
(2) Wait for approximately 1/440 of a second.
(3) Go back to step 1.

How many cycles are there in 1/440 of a second? Since one second is 1,023,000
cycles (see section 36), the answer is 1,023,000/440, or 2325. However, the
click (if we use a load) takes four cycles, and step 3 takes three, leaving 2318
cycles for step 2.

We now need a subroutine, like the walt loops of section 70, which produces
a delay of 2318 cycles. One way to write such a subroutine is as follows:

(1) Divide 2318 by 256, giving 9 and a fraction. We will therefore wait for
10 microseconds in a loop which is executed slightly fewer than 256
times.

(2) Divide 2318 by 10, giving 231 with a remainder of 8. We will therefore
load register X with 231 (two cycles) and use up 10 cycles in the loop,
as, for example, with LDA-BEQ-DEX-BNE, a total of 231 times (2310
cycles; actually 2309, because the BNE takes only 2 cycles instead of 3,
the last time through the loop, because it does not branch).

(3) This makes 2311 cycles; and a BEQ which branches (three cycles),
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together with two NOPs at two cycles apiece, complete the sequence at
2318 cycles. The complete loop is now as follows:

A440 LDA  SPKR ; PRODUCE A CLICK
! LDX #1231 ; START THE WAIT LOOP
A440L LDA #10 ; WAIT FOR 10 CYCLES
BEQ  A440C ;o (2 + 3+
A440C DEX ;2 + 3) AND
BNE A440L ;  LOOP BACK

A440N NOpP MORE CYCLES WITH
BEQ-NOP-NOP
JMP A440 ; AND LOOP BACK

BEQ  A440N ; USE UP SEVEN

Of course, this loop is endless; if we wanted to play this particular note for only
a limited period of time, we would have to insert further statements. These
would themselves take a certain amount of time, and this would have to be
taken into account when calculating constants such as 231, as above.*

Programs like this are an example of real-time programming, where the pur-
pose is not to calculate anything, but rather to cause a certain sequence of
events to happen at certain calculated intervals of time. Another very common
example of this, although the APPLE does not have it, is the seven-segment
display. This typically consists of seven light-emitting diodes, or LEDs, which
allow you to display any digit from O to 9 by turning some of them on and leav-
ing some of them off, as follows:

—— L S, S 5
anny oS /N Ve |/ —

*The APPLE has a subroutine BELL1 (with BELL1 EQU $FBD9) which produces an 0.1 second
“beep” on the speaker, using these techniques. This is useful as a primitive signal from the APPLE to
the user.
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(Here the shaded areas are “‘on” and the unshaded areas are ‘‘off.”’) Each
light-emitting diode is turned on by loading a special cell, just as the speaker is
clicked, but once the LED is on, it does not stay on; it starts to fade out in
approximately 1 millisecond (1000 microseconds). Therefore an LED must be
pulsed, like the speaker; that is, our program must refer to the special cell for
the LED at least once every 1000 microseconds.

Digital watches use seven-segment displays. Many of them use liquid crystal
displays (LCDs), an improvement over LEDs, but the seven segments are still

there.

EXERCISES

1. A louder note may be produced on the speaker by giving two clicks in a
row (that is, LDA SPKR twice) and then waiting as before. Specify the
changes to the A-440 program so that this may be done while continuing
to use exactly 2325 cycles in the loop.:

*2.  Specify the changes to the A-440 program to produce C-512, which is the
C on the piano just above A-440. Show your work. Can you do this by
changing only the constant loaded into the X register and the instructions
after the loop? (Note that 512 does not go evenly into 1,023,000, so you
will have to use an approximation.)

3. Suppose that the segments in a seven-segment display are given letter
designations as follows:

(a)

N
(b) NG
(d)
\/
N 78
@l T |l®m
(@
7N

Suppose now that a subroutine is written, which is entered with a quantity
in the A register in the following format:
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The subroutine will test each of these bits, and light the corresponding
LED if the given bit is 1. The digit 0, for example, involves LEDs a, b, c,
e, f, and g (see the diagrams in the text), and the subroutine is therefore
entered with binary 11101110, or hexadecimal EE, in the A register. Give
the corresponding hexadecimal contents of the A register for each of the
remaining digits, 1 through 9.




73. FURTHER STRING
DECLARATIONS

In section 26, we studied the declaration ASC, which permits us to define an ‘H
ASCII string in which each character has its high-order bit equal to one (with |
the string enclosed in double quotes). However, LISA has several other ways of
declaring strings, each one involving a different pseudo-operation. i
The pseudo-operation INV produces a character string that can be displayed !
on the screen in what is called “invérse_ mode’’ on the APPLE, or ‘‘black-on- I
white’” as opposed to ‘‘white-on-black.”” This mode is much used, for example, ‘
in VISICALC, a very popular APPLE program. Writing . - il

INV  "ENIER THE FIRST NUMBER"

produces the 22 characters in the string ENTER THE FIRST NUMBER with il
first two bits of each character set to 00, which the APPLE interprets as inverse
mode (see Tables 9 and 10 in the Appendix). .

The APPLE monitor subroutine call JSR SETINV (‘‘set inverse mode’’) pro-
vides another way to display inverse mode characters. After SETINV has been
called, any character, even if its first two bits are not zero, will be displayed by i ‘ ‘
JSR COUT in inverse mode. The APPLE is returned to normal mode by JSR
SETNRM (‘‘set normal mode’”). The definitions of SETINV and SETNRM are

SETINV. EQU  $FE80 |
SETNRM EQU  $FE84 |‘

The pseudo-operation BLK produces a character string that can be displayed
on the screen in what is called ‘‘blinking mode’” or “‘flashing mode’’ on the
APPLE,; this alternates between normal and inverse mode. (The cursor that nor-
mally appears on the APPLE screen is a blank, in blinking mode.) Writing

BLK "ENTER THE FIRST NUMBER”

produces the characters in the string ENTER THE FIRST NUMBER with the
first two bits of each character set to 01, which the APPLE interprets as blink-
ing mode (see Tables 9 and 10 in the Appendix). -

w7 o
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Many programmers like to keep strings in such a way that the length of a
string can be deduced from its form. LISA provides two pseudo-operations for
this—DCI and STR. DCI (““define characters immediate’”) defines a string in
which the last character has its leftmost bit different from the leftmost bits of all
the other characters in that string. Hence we can write

STARTING VALUE OF X = -1
LOOK INX MOVE TO NEXT CHARACTER OF
LDA  MSG4,X STRING, AND LOAD IT

LDX #$FF ;
ORA #%10000000 ; SET LEFTMOST BIT TO ONE FOR

JSR  COUT DISPLAY, AND DISPLAY IT
LDA  MSG4,X IF LEFTMOST BIT WAS 1, MORE
CHARS. IN STRING — — GET THEM

BMI LOOK

where COUT EQU $FDED is given, and MSG#4 is defined by

MSG4 DGI "ENTER THE FIRST NUMBER"

and ENTER THE FIRST NUMBER will be displayed. Note that if ENTER
THE FIRST NUMBER had been given in single quotes, the leftmost bit of the
last character would have been 1, not zero.

STR (meaning simply *‘string’’) gives a string preceded by a single byte
which gives its length. In LISA 1.5, the leftmost bit of this length byte is the same
as those of the rest of the string, and, in particular, is equal to 1 for a string given in
double quotes. We can write

LDA  MSG7 GET LENGTH BYTE AND SET ITS
¢ AND #%01111111 LEFTMOST BIT TO ZERO

TAX LENGTH OF STRING NOW IN X

LDY *!0 (FIRST CHAR. IS AT MSG7+!1)

WATCH INY ; MOVE.TO NEXT CHARACTER OF
LDA  MSGT7,Y ; STRING, AND LOAD IT

JSR CouT DISPLAY THIS CHARACTER
DEX . DO THIS N TIMES, WHERE N IS
BXE  WATCH THE LENGTH OF THE STRING

where COUT EQU $FDED is given, and MSG7 is defined in LISA 1.5 by

MSG7 STR "ENTER THE FIRST NUMBER"

and ENTER THE FIRST NUMBER will again be displayed (but note the AND,
which is necessary). In LISA 2.5, the length byte is a full eight bits, and the first
three instructions above may be replaced by the single instruction LDX MSG7.
Finally, there is HEX, which allows you to specify the individual hexadeci-
mal digits in a string. Thus, if we write
MSG1 ~ HEX  C5CED4C5D2A0D4CBC5A0
HEX  C6C9D2D3D4A0CED5CDC2C5D2
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we get the string ENTER THE FIRST NUMBER just as before (refer to Fig-
ute 11, section 24). The main use of HEX, however, is to specify hexadecimal digits
that do not correspond to characters (in normal mode). Note that HEX uses no
quotes or dollar signs.

EXERCISES

1. In each case, give a single use of either INV or BLK which is equivalent
to the given sequence. : |

*(a) BYT  $4B , il
BYT  $79 iR

i

(b) BYT  $0B 1
BYT '$3;9 1 i

2. Ineach case, give a single use of either DCI or STR which is equivalent to 1 ‘
the given sequence. (Assume LISA 1.5.) '

i
|
(@) BYT  $D3 1[ ‘
BYT  $D4 ‘}
BYT $CF 1 |
BYT  $50 !;
*b) BYT  $83
BYT $D9 ‘ ‘
BYT $C5 H
BYT  $D3 !

*3,  Give a single use of HEX which is equivalent to the following sequence.
(Note that only three bytes, not five, are specified. See section 63.)

BYT 110
BYT  $3456 e
HBY  $3456 i




74. ZERO-PAGE INSTRUCTIONS

Think of the memory of the 6502 as being like a book; it is made up of 256
parts, called pages, and each page contains 256 characters (or bytes). The pages
are numbered from 00 to FF in hexadecimal. Page ab contains the bytes, or
cells, with addresses ab00 through abFF. :

Using this terminology, page one is the stack, since the stack extends from
address 0100 to O1FF, as mentioned in section 60. Page two is the buffer
INBUE, used in the subroutines GETLN and GETLNZ, as mentioned in sec-
tion 25.

The most 1mportant page, however, is page zero. Every cell in page zero has

~ an address which is really only eight bits lorig (00 to FF); and there exists a

whole set of instriuctions which use eight-bit (that is, one-byte) addresses,
instead of 16-bit addresses. These are called zero-page instructions.
Almost every instruction on the 6502 which involves a 16-bit address has a

_ counterpart which involves an 8-bit (page zero) address. In fact, there are only

four exceptions to this rule, as follows:

(1) Zero-page instructions allow indirect addressing in many cases; this will
be taken yp in the next two sections.

(2) Aside from indirect addressing, zero-page instructions cannot be indexed
by Y (except for LDX and STX). This is no great loss, because 16-bit
addresses can always be used in this case (and page zero is not a good
place to store arrays, anyway).

(3) STX Z,Y and STY Z,X may be used if Z is a zero-page address. (We
have already séen that they cannot be used otherwise.)

(4) JMP and JSR can go to 16-bit addresses only. (Again, this is no great
loss; every zero-page address is also a 16-bit address.)

The greatest advantage of page zero is that it saves both time and space, as
we can see from Table 4 in the Appendix, where the notation Z denotes a zero-
page instruction. Thus ADC Q takes 4 cycles and 3 bytes, whereas ADC Z (the
zero-page equivalent of ADC Q) takes only 3 cycles and 2 bytes. The same is
true for LDA, STA, and many other instructions.

Thus, for example, in the first program of section 33, we can save two bytes
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and two cycles (one of each for the STA, and one of each for the ADC) by put- {1 5
ting TEMP in page zero. Likewise, in the second program of section 33, we can ‘
save two bytes and 2n cycles, where n is the mumber of digits in the number L5 |
being input. Note that the loop is done » times, and we save two cycles each I i
time; but only two bytes are saved (STA TEMP and ADC TEMP appear only f 1‘ |
once each, in this program). i
The APPLE system uses almost all of page zero itself, since so much time !
and space are saved. If you are constructing your own 6502-based system, you 1
should do the same. On the APPLE, however, you cannot use page zero Il
indiscriminately; otherwise, you might overwrite some of the data used by the ‘ifl
APPLE monitor, LISA, and BASIC in page zero. If you do that, then at some ;
|

later time, when you are using the APPLE monitor, LISA, or BASIC, or when
you use subroutines such as RDKEY or COUT, these may very easily behave in |
unpredictable ways. |

Fortunately, cells 19 through 1F are unused by the APPLE monitor, LISA, /|
and BASIC. We can thus use these cells for variables such as TEMP, in the ] ]
example above. A variant of EQU (see section 25), called EPZ (Equate to Page i
Zero), is used for setting these up. Thus by writing

TEMP EPZ $1F
TEMP2 EPZ $1E
TEMP3 EPZ $1D

tions, so that STA TEMP2, for example, uses an 8-bit address. (If EQU were
used instead of EPZ, then STA TEMP2 would have a 16-bit address, even

in your program, you can use TEMP, TEMP2, and TEMP3 as page-zero loca- |
though one byte of that address would be zero.) . |
Many page-zero locations have special meanings, on the APPLE, that are
available to users. For example, location $33 is the prompt character—the ‘
character which appears on the screen when you are supposed to type some
input. The LISA assembler stores “‘!I”” in location $33, and it is this which
makes ! the prompt character in LISA. If you wish to write your own system,
with its own prompt character ($ for example), you can store this in location ‘\‘
|

$33 at the start of your system.

The APPLE system subroutine GETLN, which we met in section 25 (exer-
cise 3), outputs the prompt character to the screen and then calls GETLNI, :

another system subroutine which may be used (like GETLN) to input a line, but
without giving a prompt character. Thus JSR GETLN is equivalent to the
sequence ' )

LDA = PROMPT
JSR  CoUT
JSR~ GETLNI ..

where GETLN1 EQU $FD6F and PROMPT EPZ $33 have been specified. i
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Indexing in page zero stays in page zero. For example, even though

AO+A0 = 140 (hexadecimal), the zero-page instruction LDA $A0,X loads the
A register with the contents of cell 0040 (not cell 0140) if the X register con-
tains hexadecimal AQ.

EXERCISES

1.

*(a) How many cycles (maximum and minimum), and how many bytes,
would be saved in the subroutine MULT of section 39, if MDATAI
and MDATA?2 were kept in page zero? Show your work. (Do not do
the whole analysis twice; look only at the instructions that are different
in the two cases. Remember that if k cycles are saved in a loop which
is done n times, this makes a total of kn cycles saved.)

. *(b) How many cycles (maximum and minimum), and how maﬁy bytes,

would be saved in the subroutine DIV of section 40, if DDATA1 and
DDATA2 were kept in page zero? Show your work. (As in part (a), do
not do the whole analysis twice.)

Can it save any cycles, or any bytes, to put some of the instructions of a
program in page zero? Why or why not?

We saw in section 60 that, if we move the stack pointer to the X register
with TSX, then LDA $0101,X loads the A register with the quantity on top
of the stack. It thus follows that STA $00FF, X stores the A register in a cell
which, is not currently in the stack (being “above the top of the stack™).
This STA instruction, however, cannot be made into a zero-page instruc-

tion. Why not?




75. PRE-INDEXED INDIRECT
ADDRESSING

In section 58, we considered indirect jumps such as JMP (B), which use an
address which is itself stored in memory. This is a special case of indirect
addressing, a concept used by a great number of computers both large and small.

A ““load Z”’ instruction with indirect addressing, for example, loads a regis-
ter with a quantity R, where Z contains the address of R. A “store Z” instruc-
tion with indirect addressing stores a registerin the cell R, where Z, as before,
contains the address of R. :

It is possible for an instruction to use both indirect addressing and indexing.
There is some question, however, as to which ought to be done first. If the
indexing is done first, then a *‘load Z,index”’ instruction, with indirect address-
ing, would load R, where the address of R would be found by a “load Z,index’’
instruction with ordinary, or direct, addressing.

On the other hand, if the indirect addressing is done first, then a “load
7.,index’’ instruction, with indirect addressing, would be like ‘‘load R,index’”’
where the address of R is found at Z.

The 6502 is unusual in that it features both these kinds of indirect addressing.
However, they are subject to a number of restrictions, as follows:

(1) All indirect addresses must be in page zero. This makes indirect addressing
more useful in the APPLE system, which uses almost all of page zero, than
in APPLE user programs. ,

(2) Pre-indexed indirect addressing (indexing first) uses the X register only;
post-indexed indirect addressing (where the indirect addressing comes
first) uses the Y register only.

(3) Except for IMP—which we have already studied—indirect addressing
without indexing at all cannot be used. We can set either X or Y to zero
(much like setting the carry flag to zero before ADC, in order to do an add
without carry); or we can use another trick, explained at the end of the next
section. JMP is also an exception to rule (1) above.
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(4) Indirect addressing with indexing can be used only with the family of
j instructions we studied in section 51; namely, LDA, STA, ADC, SBC,
! CMP, AND, ORA, and EOR.

The notation (Z,X) is used for pre-indexed indirect addressing. Thus LDA

(ALPHA,X) loads the A register with R, where LDA ALPHA,X would load the

L A register with the lower half of the address of R, and LDA ALPHA+!1,X ;
would load the A register with the upper half of that same address.

Under these same conditions, STA (ALPHA,X) would store the A register in
R; CMP (ALPHA,X) would compare the A register to R and set the status flags
accordingly; and so on.

‘ Pre-indexed indirect addressing depends very strongly on how page zero is
‘ ‘ used. This is because, in order to use it, you need several addresses, all in page
‘ zero, which you can index by means of the X register.
P The best use for pre-indexed indirect addressing is in calling subroutines with
L parameters. For example, sup[')ose.we have a FORTRAN subroutine LOGAND
P (I, J, K) which sets K to the logical AND of I and J. We can. then CALL
o LOGANDMI, M2, M3) in FORTRAN, for example, and this will set M3 to
| the logical AND of M1 and M2.* In assembly language, if M1, M2, and M3 are
w single-byte data, we do a JSR LOGAND preceded by LDX 3#MSEQ where

- MSEQ  ADR M1
e . ADR M2
i . ADR M3

’ has been specified, in page zero (see section 63 for ADR). The subroutine
| LOGAND is now

LOGAND LDA  (0,X) ; LOGAND(I, J, K) LOADS I,
\ AND (2,X) ; DOES A LOGICAL AND WITH
: STA  (4,X) ; J, STORES THE RESULT IN
] RTS ; K, AND EXITS

For example, ANDA2,X) starts by adding 2 to the 8-bit address of MSEQ
(which is in'the X register), producing MSEQ + 12; but the address of M2 is at
MSEQ + 12 and MSEQ + !3, so that AND M2 is effectively done. |

A sequence of addresses such as that given at MSEQ is known as a calling
sequence. At some later time, you can load X with the zero-page address of a
different calling sequence, and call LOGAND(M4, M5, M6), for example. In
order to use this technique effectively on the 6502, however, you have to have
large amounts of zero-page memory available; such memory is most likely to be

*This feature of FORTRAN has no counterpart in BASIC.

o
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available if you are constructing your own 6502-based system, independently of
the APPLE.

Another use for pre-indexed indirect addressing is as follows.” Suppose that
your system has several addresses kept ifi page zero, but not necessarily in an
array. You can use data at any one of these addresses by loading the correspond-
ing zero-page address into the X register and then doing LDA (0,X) (or STA,
ADC, and so on).

The indexing done in pre-indexed indirect addressmg stays in page zero, just as
in the preceding section. Thus, if the X register contains $AQ, then LDA ($A0,X)
uses an indirect address in cells $40 and $41—not in cells $0140 and $0141.

EXERCISES

1. Suppose that Z has the zero-page address 1A, while the X register contains
4. What addresses in memory must have the contents 09 and 14, respec-
- tively, in order for STA (Z,X) to store the A register at location 09147

*2. Write a subroutine EXCH(B1, B2) which exchanges the contents of the
bytes B1 and B2.-Assume that the addresses of B1 and B2 are given in
zero-page locations CS, CS+!1, CS+!2, and CS+!13, where LDX #CS
followed by JSR EXCH calls EXCH(B1, B2). Use pre-indexed indirect
addressing to load and store B1 and B2. Do not use the Y register.

3. Suppose that you are writing a subroutine ADD16(Q1, Q2, SUM) which
adds the 16-bit quantities Q1 and Q2 to form the 16-bit quantity SUM.
You would like to write it along the lines of the preceding exetcise. That
is, LDX #CS followed by JSR ADDI16 should call ADD16(Q1, Q2,
SUM), where the addresses of I, J, and K are kept in zero-page locations
CS through CS+!5. What difficulty will arise in writing such a subrou-
tine? (Hint: Try writing it and see.)




76. POST-INDEXED INDIRECT
ADDRESSING

The notation (Z),Y is used for post-indexed indirect addressing. Thus LDA Z),Y
is like LDA R,Y where the address of R is kept, with bytes reversed, at the zero-
page locations Z and Z + 1. Under the same conditions, STA (Z),Y is like STA
R,Y; ADC (Z),Y is like ADC R,Y; and so on.

* The difference in notation between (Z,X) and (£),Y can be remembered as
follows: in (Z,X) we do .indexing first (producing Z,X) and then indirect
addressing (producing (Z,X)); in (2),Y we do indirect addressing first (produc-
ing (Z)) and then indexing (producing (Z),Y).

-Post-indexed indirect addressing is used when a subroutine has a parameter
which is the riame of an array, such as a character string. For example, let
DISPL(S) be a subroutine which displays the character string S. We set aside a
place in page zero (call it ADRS) for the address of S. Now, to display the
string T (for example), we first put the address of T into ADRS, as follows:

LDA  #T ; MOVE ADDRESS OF

STA  ADRS ;T INTO ADRS
4 LDA /T ; (LOWER HALF FIRST,

STA  ADRS+!1 ; THEN UPPER HALF)

(For the notations #T and /T, see section 58.) The subroutine DISPL can now be
Just like the first subroutine of section 25, except that LDA (ADRS),Y is used
instead of LDA T;,Y (and has the same effect). In general, (ADRS),Y is used
instead of T,Y to'make indexed reference to the array whose name is the sub-
routine parameter.

This technique requires only two cells in page zero; and thus it is used much
more often than the corresponding technique with pre-indexed indirect address-
ing, which requires many cells in page zero. )

Post-indexed indirect addressing is useful in list Processing on the 6502. A
list node 1. of length n consists of the n bytes L, L+!1, and so on, up through
L+!n—11. A pointer to the list node L consists of two bytes (say L2 and
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L2+!1) which contain the address of L. A simple list of length k consists of k
list nodes Ly, . - ., L, each of which contains two bytes (say L; and L; +!1)
which are a pointér to the next node, or zero if this is the last node. (Zero is not the

address of any list node.)
Now suppose that the zero-page locations PTR and PTR+!1 are a pointer to

the list node L; (or, as we say, they point to L; ). Then the sequence

LDY #!3
LDA (PIR),Y

(for example) loads the A register with byte 3 of L; (the first byte of L; being
byte z€r0). If the first two bytes of each node point to the next node, as above,
then the sequence '

SET UP Y TO LOAD LOWER

LDY #!0

LDA (PTR) , Y HALF OF POINTER

PHA SAVE THIS LOWER HALF

INY INCREASE Y SO WE CAN LOAD

STA PIR+!1 STORE IN PTR (UPPER HALF)
PLA RESTORE LOWER HALF OF
STA PIR POINTER AND STORE IN PTR

IDA (PTR),Y UPPER HALE OF POINTER
sets PTR and PTR+!1 to point to the next node.

Either kind of indirect addressing may be used with the corresponding regis-
ter (X or Y) set to zero, to give the effect of indirect addressing without index-
ing. Post-indexed indirect addressing is slightly faster (five cycles instead of
six) if used in this way. However, it is best just to use whatever index register
happens to be free, and to use Y if they are both free. In some cases, X (or Y) may
be known to be zero, as after a loop ending with DEX and BNE.

Faster indirect addressing without indexing can be done if we use the follow-

ing trick. Suppose that L and L+!1 are our two locations in page zero. KeepL

itself set to zero at all times. Now, in order to indirectly address a cell P with
hexadecimal address abcd, store ab into L+ !1 and load Y with the constant cd.
If this is done, L and L+!1 will contain the two-byte quantity ab00, and LDA
(L),Y will load the variable whose address is ab00+cd, or abed. That is, LDA
(L),Y will load P; and, in the same way, STA (L),Y will store P, and so on. The
instructions

LDY /P
STY L+!1
LDY #P

will store ab into L+!1 and load Y with cd, as indicated above.
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EXERCISES
*1. Suppose that the contents of the zero-page locations Z and Z+!1 are 9

‘*3.

and 8 respectively. What must be done in the Y register in order for STA
(Z),Y to store the A register at location 0908? (Be careful. There is a
trick to this one.)

Write a subroutine MSGOUT to display a message, one character at a
time (using COUT as in section 25). Assume that the address of the mes-
sage to be displayed is in the zero-page locations MSG and MSG+!1. The
message itself consists of a length byte followed by a string to be dis-
played; that is, if MSG and MSG+!1 contain the 16-bit quantity o, then
cells a+!1 through o+ !n, for some n, contain the n bytes of the message,
and cell o contains 7 itself.

Suppose that we tried to eliminate the PHA and the PLA from the final

~ program of this section, by writing

, LDY 410
DA  (PIR),Y
INY
STA  PTR

LDA (PTR), Y
STA PTR+!1

This would not work. Why not?
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Since the X register is only eight bits long, and similarly for the Y register, we
can make an indexed reference to no more than 256 bytes of any array, as we
saw in section 13. A long array, on the 6502, is an array of more than 256
bytes. We shall now study how to do indexing in long arrays.

Suppose we do LDX J followed by LDA T,X to make reference to T(J). The
instruction LDA T,X adds the 16-bit address of T to the 8-bit quantity J. In a
Jong array, J will be a 16-bit quantity. What we have to do is to add this to the
16-bit address of T, using 16-bit addition as discussed in section 15. This gives
us the address of T(J), and now we can use post-indexed indirect addressing, as
in the preceding section, thus: )

LDA #T ADD THE ADDRESS OF T
CLC (WITH CARRY INITIALLY CLEAR)
ADC J TO THE: 16-BIT QUANTITY J

LDA /T AND PUT THE RESULT IN THE
ADC J+!1 ZERO-PAGE LOCATIONS

STA  ZP+!1 ZP AND ZP+!1

LDY #10 ; THEN USE POST-INDEXED INDIRECT

STA  ZP ;  (KEPT WITH BYTES REVERSED)

LDA zrP),Y ADDRESSING (WITH Y = 0)

We can improve this slightly by using one of the tricks of the preceding sec-
tion. The LDY #!10 is eliminated; the STA ZP becomes TAY; and ZP is kept
equal to zero at all times. Thus, as before, if abcd is the hexadecimal address of
T(J), then ab00 is kept at ZP and ZP+!1 (with bytes reversed); cd is keptin Y;
and LDA (ZP),Y loads the byte at address ab00+cd = abcd.

Suppose now that we wish to increment an index in a long array. We cannot
just increment Y; we must increment the 16-bit quantity contained in Y and
ZP+!1 (if the improvement above is used), and similarly for decrementing such
an index. Using the methods of section 30, the instruction sequences would be
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INY TYA
BNE BETA BNE BETA
’ INC ZP+'1 DEC ZP+!1
3
BETA  (next instruction) BETA DEY
Index Increment Index Decrement

Note that we are again using the fact that transfer instructions such as TYA set the
zero (and the sign) flag.* Actually, there is a single exception to this rule; TXS

does not affect any flags.

Constant subscripts in long arrays are used in exactly the same way they are
in short arrays. If we have an array T of size 10000, starting with T(0), and we
wish to load T(5000) into the Y register, we can use LDY T+!5000 just as we

_ use LDY T+!50 for a short array, to load T(50) into the Y register.

Parallel long arrays and serial long arrays may be used. In a serial array of
two-byte quantities, we-multiply our indices by 2, as indicated in section 32;
and in a serial long array, this involves a 16-bit shift, as we studied these in sec-

 tion 34./Note that, for example, four parallel arrays of 256 bytes each are still

short arrays and may be manipulated as such, even though there is a total of
1,024 bytes in the four arrays.

Offsets, in a similar way, are the same for long as for short arrays. In the
instructions above which add J to the address of T, if we wished to use an offset
of —1, we would be adding J to the quantity which is one less than the address
of T. This can be done by replacing #T and /T by #T—!1 and /T—!1 respec-
tively, in these instructions. Note that the # and / apply to entire expressions; thus,
for example, /T —!1 means /(T —!1), and not (/T)—1. (We never actually use
parenthes’es in such expressions in LISA, however.)

In this way we can handle, in a long array, all of the kinds of expressions
with offsets that we studied in sections 23 and 32. This includes arrays T start-
ing with T(1), or with some other T(k) for k #0; expressions of the form
T(e+k) or T(e—k), where k is a (possibly 16-bit) constant; and offsets in serial
long arrays.

EXERCISES

1. Give a BASIC statement which corresponds with each of the following
sequences of assembly language instructions. Assume that T is a long array
of 8-bit quantities, which starts at T(0); that ZP and ZP+!1 are zero-page
locations, with ZP set to zero; and that J and K are 16-bit quantities.

*If the improvement of the preceding page is not used, then INY and DEY, here, become INC ZP and
DEC ZP respectively.
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J+i
K+!'1
#T

/T
ZP+11
(ZP), Y
/T
J+11
ZP+11
(ZP) , Y
ZP+ 11
(ZP),Y
#T

K

/T
K+11
ZP+11
(ZP),Y
#T

/T

#10
ZP+11
#10
(ZP),Y

BNE  ALPHA

INC

STA

LDA
CLC
ADC
TAY
LDA
ADC
STA
LDA
CLC
ADC
TAY
LDA
ADC
STA
LDA
STA

LDA
CLC
ADC
TAY
LDA
ADC
PHA
TYA
CLC
ADC
TAY
PLA
ADC
“STA
LDA
STA
LDA
CLC
ADC
TAY
LDA
ADC
STA
IDA
INY

ALPHA

w
>
m ~ ~~
= ~~
4 & L )
0 *
=
-]
-
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. *2. How many bytes, and how many cycles, are saved if the specified
improvement is made to the first program of this section? Show your
work. (Remember that the cells ZP and ZP +!1 are in page zero.)

| 3. Write a loop which sets T(J) = 0 if J is even and 1 if J is odd, for all ele-

i ; ments T(J) of the long array T of N elements. Set T(0) first, then T(1),

{ ' and so on through T(N), where N is a two-byte quantity (note that N+

: different elements are set). Use post-indexed indirect addressing, with the
zero-page locations ZP and ZP+!1; assume that ZP is permanently set to
zero. For loop control, move the two-byte quantity N to a two-byte quan-
tity N1, and decrease N1 until it becomes zero, using the sequence

I
O DEC N1
! BNE  ALPHA
DEC  N1+!1
BNE  ALPHA

N Note that there is a problem with this sequence, because the two-byte
3 number N1 becomes zero only if N1+!1 was zero before decrementing,
i not afterwards. However, this can be fixed by incrementing N1+ !1 when
this is initialized, unless N1 = 0 (if the two-byte quantity N1 is not to be
used for any purpose other thdn counting).
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We shall now introduce a fascinating trick which can often be used to save
space and time in programs written for the 6502. It has several forms, and
many uses, although it also has a couple of disadvantages. We will consider it
initially as part of an improved method of processing long arrays.

Consider the following subroutine, in both assembly language and machine
Janguage form (LELA stands for Load Element of Long Array):

0840 AD FE 10 LELA LDA  ARRAY
0843 EE 41 08 : " INC LELA+!1
0846 DO 03 . " BNE LELA1
0848 EE 42 08 INC LELA+!2
084B 60 LELA1 RTS

What happens when we call LELA? The first element of ARRAY, at address
10FE, is loaded, and then we increment LELA+!1. Where is that? It is one of
the instruction bytes—specifically, the one containing FE. After incrementa-
tion, it contains FF. Since this is not zero, we branch to LELA1, and return.

Now suppose we call LELA again. Cells 0840, 0841, and 0842 now contain
AD, FF (not FE), and 10. What happens? Remember that it is the machine lan-
guage form that is executed—not the assembly language form. The instruction
AD FF 10 loads the A register with the second element of ARRAY, at address
10FF. Now we increment LELA+!1 again, from FF to zero, and, since this is
zero, we also increment LELA+!2, from 10 to 11. Thus cells 0840, 0841, and
0842 now contain AD, 00, and 11. (The sequence INC-BNE-INC is the 16-bit
increment, from section 30.)

The third time we call LELA, we will do the instruction AD 00 11, which
loads the third element of ARRAY; and so.on. Every time we call LELA, it
loads an element of ARRAY and advances itself so that the next element is
loaded the next time. Furthermore, because of the 16-bit increment, this works
on long arrays as well as short ones.

This is called address modification. We are modifying, or changing, the
address in an instruction; in this case, we are adding one to it. We can also
modify an address by storing into it; for example, we can set up the initial con-
tents (FE and 10) of this same address by executing
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LDA #ARRAY ; RIGHT-HAND 8 BITS OF
] STA LELA+!'1 ; ADDRESS OF ARRAY
\ LDA /ARRAY ; LEFT-HAND 8 BITS OF

' STA  LELA+!2 ADDRESS OF ARRAY

If LELA has been called several times, the above sequence sets up LELA to
start over again, at the beginning of the array.

Now for the -disadvantages. First, we have to remeémber to do'the above
sequence at the start of our program, as part of the initialization. It is very easy

.to forget this, or to think that it is not necessary because the array is processed

only once; but, if our program later becomes a subroutine, which is called more
than orice, then the array will be processed more than once, and each time it has
to start over at the beglnmng

. The other dlsadvantage is more serious. It has to do with the two kinds of
memory in rmcrocomputer systéms. There is ordinary memory, usually called,
for historical reasons, .“random-access memory” or RAM; and there is read-
only memory, or ROM.  We mentioned in section 70 that ‘“‘reading from
memory®’ and ‘‘writing to memory’’ are terms used in computer hardware for
what we have been calling loading and storing. Read-only memory, then, is
memory that-can be. loaded, but cannot be stored.

ROM is more expensive than RAM, but it is often used to protect a program
(such as the monitor) from being overwritten by a bug in a user’s program. You can
put in ROM any bytes that you are never going to store into; this includes any
constant data that you have, and it also includes almost all the instructions of your
programs. However, an instruction like the one at LELA cannot go into ROM,
because you are storing into it (and also incrementing it, a process that includes
storing a new value). The same is true of any instruction whose address is
modified. . .

The APPLE uses RAM for user programs (although it uses ROM for the
instruction codes of BASIC and the monitor). You will, therefore, have no diffi-
culty using -address modification on the APPLE. Even in systems which are
implemented miostly in ROM, there is always a certain amount of RAM; and
there is usually enough RAM in any system to keep a few subroutines that use
address modification, like LELA. Only the subroutines themselves need to be in
RAM,; the initialization and calling instructions can be anywhere in ROM.

The address in our modified instruction is a dummy address; it is “‘stored
over’” by the initialization, and so it does not need to be given as ARRAY.

. Instead of LDA ARRAY we might write LDA MODIFY (where MODIFY EQU

$FFFF or any other 16-bit address) to remind us that this is a modified address.
Also, we could replace LDA by STA, which would give us a subroutine to store
the A register in the “‘next byte’’ of a long array.
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EXERCISES

Give a sequence of assembly language instructions, using address modifi-
cation, which sets W =T(J), where T is a long array and J is a 16-bijt
quantity. Use the same idea as in the preceding section, but with address
modification (and the dummy address MODIFY) rather than page zero.

Give a sequence of instructions which changes ‘‘load T(J)” to “load
T(J—1)’ at the instruction with the label L. (Hint: see section 30.)

An alternative way of writing the LELA program of this section is to
change the first two 1nstruct10ns to .

LELA LDA ARRAY,Y
INY

with the Y register initialized ta zero; that is, LDY #!0 replaces the

- instructions

LDA #ARRAY
STA  LELA+!1

which initialize LELA+!1 (and this location is no longer modified). Dis-
cuss the advantages and disadvantages of this alternative scheme.
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: Address modification is useful in many other situations besides that of process-
A .ing long arrays. One of the most important has to do with subroutine parame-
; ‘ ters. In MULT and DIV we have seen that up to three bytes can be given to a
; subroutine, and returned from the subroutine, in the registers. When there are
| more parameters than this, however, or when an array name is a parameter,
* other techniques must be used. " '

l Suppose first of all that we have a subroutine with one parameter, which is
the name of an array. The address of this array will be assumed to be entered in
’éf‘ C the A and X registers, with the upper half in A and the lower half in X. That is,

: we might caH G(U) by

| o
i JIDX  #U
b JSR G

: g ‘ v Now suppose that G is defined, in general, as G(T), where T is U this time, but
| a ‘ T might be something else the next time that G is called. (We refer to T as a for-
| mal parameter, and to U as the corresponding actual parameter.) Suppose that
. 4 ‘ . ALPHA is the label of an instruction which makes reference to T, such as
i

ALPHA  LDA  MODIFY,X
L Then, at the beginning of the subroutine G, we perform

!

{ STK  ALPHA+!1
L e STA  ALPHA+!2
i 1

f

Note that X, the lower half of the address, goes first, while A, the upper half,
goes second (since the bytes are reversed).

If there are'several instructions in G which make reference to T, then we
must have instructions which store A and X.in every one of these. The collec-
tion of STA-STX pairs at the beginning of the program is the preamble to the
program. In general, a preamble is that part of the initialization of a subroutine
that puts actual parameter addresses wherever they are needed.
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Now suppose that G has two parameters, T1 and T2, both of which are names
of arrays. For example, G might be a program which moves the array T1 to the
array T2. We have two addresses, of two bytes each, to be given, or passed, as
we say, to the subroutine by its calling program; and three registers, A, X, and
Y, are not enough. One solution is to push the addresses of T1 and T2 onto the
stack before calling G, as follows:

ADDRESS OF T1 TO

LDA /T1

PHA STACK (UPPER HALF)
LDA #T1 ADDRESS OF, T1 TO
PHA STACK (LOWER HALF)

LDA /T2 ; ADDRESS OF T2 TO

PHA STACK (UPPER HALF)

LDA  #T2 ADDRESS OF T2 TO

PHA STACK (LOWER HALF)

JSR G RETURN ADDRESS TO STACK

The subroutine G must now pull these quantities from the stack. First it pulls
the return address and saves this in X and Y; then it pulls the four address bytes
and modifies addresses accordingly (remembering that these bytes are pulled in
the reverse order of pushing); finally, it pushes the return address back on the
stack, so that a proper RTS may be made. Note that everything pushed is subse-
quently pulled, although the four address bytes are pushed in the calling pro-
gram and pulled in the subroutine.

For a subroutine G to move N bytes from . T1 to T2, we may proceed as in
Figure 25. Of course, N might also be a parameter, in which case the preamble
would be further expanded. (The same address modification techniques,
clearly, work for both single-variable parameters such as N and array parame-
ters such as T1 and T2.)

EXERCISES
1. Explain why STA BETA+!1 comes before STA BETA+!2 in Figure 25.

*2.  Write a subroutine ARRAYO(T, N) which sets T(1) through T(N) to zero.
The subroutine should be entered with the value of N in the Y register and
the address of T in A and X (upper half in A, lower half in X). Thus, for
example, to set U(1) through U(16) to zero, one should be able to write

LDA /U
LDX #U
LDY #116

JSR  ARRAYO

Use address modification, and decrement the index in the Y register.
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‘ G PLA : LOW ORDER BYTE OF
1 TAX ;. RETURN ADDRESS TO X
1 ] PLA ; HIGH ORDER BYTE OF
! : TAY :  RETURN ADDRESS TO Y
! PLA : LOW ORDER BYIE OF
: STA BETA+!1 . ADDRESS OF T2 TO BETA
PLA ; HIGH ORDER BYTE OF
STA BETA+1!2 ; ADDRESS OF T2 TO BETA
PLA : LOW ORDER BYTE OF:
| STA ALPHA+!1 ;" ADDRESS OF T1 TO ALPHA
. . PLA ; HIGH ORDER BYTE OF
| STA  ALPHA+!2 . ADDRESS OF T1 TO ALPHA
; TYA : PUT THE RETURN ADDRESS
; PHA ; BACK ON THE STACK,
1 TXA , ; PUSHING IN THE REVERSE
j PHA ; ORDER OF PULLING
. 1DX #!0 - ; INITIAL VALUE OF INDEX
| o ALPHA LDA 'MODIFY,X : MOVE ONE BYTE FROM THE
. BETA STA  MODIFY, X ;  1ST ARRAY TO THE 2ND
| , INX ; TO NEXT BYTE TO 'BE MOVED
' : CPX N ; WAS THIS THE LAST BYTE
BNE ALPHA ; IF NOT, LOOP BACK
RTS ' ; END OF SUBROUTINE

\ -

P . Figure 25. A Subroutine with a Preamble.

- | ‘ 3. Modify the subroutine of Figure 25 in such a way that it expects the
IR address of T1 on the stack, and the address of T2 in the A and X registers.

S (Thi$ is a hybrid of the two methods of this section.) That is, G should be
L called by
LDA /Tl
; PHA
LDA  #T1
y, PHA
‘ LDA /T2
¥ LDX  #T2
e JSR G




80. IMMEDIATE DATA
MODIFICATION

Address modification is concerned with addresses in three-byte instructions, but
we can also modify constant data in two-byte instructions. If we do so, we can
save considerable amounts of memory in APPLE programs. In fact, as we shall
see, there is very little reason, in APPLE user programs, to have separate data
bytes at all, except for those which are in arrays.

Suppose we have a data byte called M. There will be at least one instruction,
making reference to M, other than a store instruction. Suppose, for the
moment, that this is a load instruction (LDA M). Change this instruction to a
constant load of zero (LDA #!0) with a label (such as LOADM), and keep M
itself in the second byte of this instruction.

When you store M, you will store it at LOADM+!1. This is an immediate
data modification; it changes the immediate data in the instruction at LOADM.
This could be done by

STA  LOADM+!'1

but another, and more easily understood, notation for the same instruction is
STA M where M has been defined at the end of your program by

M EQU  LOADM+!1

All instructions in your program which make reference to M, except for
LOADM, will now make reference to the second byte of the instruction
LOADM. This saves two bytes—the byte M itself, and another byte which is
saved because LOADM has been changed from a three-byte to a two-byte
instruction. It also saves two cycles each time the instruction at LOADM is
done, because this has been changed from a four-cycle to a two-cycle instruc-
tion. For maximum savings of this kind, you should choose LOADM to be that
instruction (with immediate addressing), making reference to M, which is exe-
cuted most often.

Two-byte data can be handled in the same way, although the two bytes of a
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16-bit quantity Q are no longer Q and Q + !1. With every such quantity Q, there
will normally be two instructions with immediate addressing which act on the
two halves of Q. These are now both changed to instructions which make refer-
ence to constants. Figure 26 shows this process applied to the first of the twg
byte comparison sequences of section 29. The two bytes are now called QHI
and QLO, and referred to as such in other instructions.

Saving and restoring, if the restoring is done by other than a load, is made
faster by immediate data modification. Instead of STA TEMP and ADC TEMp
as at the beginning of section 33, write STA TEMP and TEMPL. ADC #!0
where TEMP EQU TEMPL+!1 is inserted at the end of your program to define
TEMP. This saves two cycles every time the instruction sequence is done, as well
as two bytes of memory.

The instructions that have immediate addressing on the 6502 are LDA, LDX,
LDY, ADC, SBC, CMP, CPX, CPY, AND, ORA, and EOR. This implies that
immediate data modification is rot applicable to certain data bytes, such as
those which are stored and decremented only (a loop count, for example), or
stored and shifted only.

- Immediate data modification is very seldom an 1mprovement over keeping
data bytes in page zero, if you have the space in page zero to do this. Even a
simplé sequence such as the one above, involving STA TEMP and ADC TEMP,

DA P+!1 ; COMPARE UPPER HALF OF P
CMP Q+!1  ; TO UPPER HALF OF Q
BNE DECIDE ; IF NOT EQUAL, DECIDE
‘ IDA P ; COMPARE LOWER HALF OF P
! P Q . TO LOWER HALF OF Q
DECIDE BCC LESS ; GOTOLESS IF P < Q

(a)
v
~ LDA P+!1 ; COMPARE: UPPER HALF OF P
D1 CMP #10 TO QHI (KEPT IN 2ND BYTE)

BNE DECIDE ; IF NOT EQUAL, DECIDE
IDA P ; COMPARE LOWER HALF OF P

D2 CMP #10 TO QLO (KEPT IN 2ND BYTE)

DECIDE BCC LESS ; TO LESS IF P < (QHI,QLO)

QHI EQU Di+!1 ; SPECIFY-WHERE QHI IS KEPT

QLO EQU D2+!1 ; SPECIFY WHERE QLO IS KEPT
(b)

Figure 26. Immediate Data Modification.
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is normally not improved (in either space or time) by immediate data modifica- i
tion if TEMP had been kept in page zero. One exception to this is if the ADC is '; |
in a loop, done 7 times, while the STA is not; in this case n cycles are saved by ‘ |
the ADC, while only one extra cycle is taken by the STA. !

The uses of EQU in this section are normally kept at the end of a program. |
This is because, when. a label such as LOADM or TEMPL is part of an b |
expression used in EQU (on the right-hand side), this label must have been defined g
before the EQU (that is, the EQU must appear affer the labeled instruction or ‘
data). Otherwise, we could write (for example)

|
|

P EQU Q+!T ,
Q  EQU P-l1 : |
\

and trying to determine what Q and P actually are would send LISA itself into
an endless loop! An expression such as Q+!1 above, appearing in an EQU
pefore Q is defined, is known as a forward reference, and these are not
permitted by the LISA system. '

EXERCISES fil

] 4
I 1. Consider the following program, which stores in NEQUAL the number of i
elements of the serial array T of two-byte quantities that are equal to the

STA J+!1 B

two-byte quantity in A and X: ‘M“ ‘
STX J |1
LDY #!0 I
LDX  #!200 i
ALPHA  LDA T-!2,X 1!3;“ |
P J Il ‘
BNE BETA 1;“! i
DA T-1,X ik
cMP J+!1 ‘HM
BNE BETA i
V. Y ‘ﬂi:!: |
3 BETA DEX i
i DEX Il
1 BNE  ALPHA “\
STY  NEQUAL i
3 -
. *(a) Specify the changes to instructions in this program if immediate data i § %
1 modification is used for the two bytes of J. Call these two bytes I |
: JUPPER and JLOWER, and define each of them by EQU. (See the i '
hint to exercise 1(a), section 74.) k 1 ,%i
| e "
i I
sH N
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*(b) How many cycles (maximum and minimum), and how many bytes, are
saved if this is done? Show your work.
(c) How many cycles (maximum and minimum), and how many bytes,
would be saved if the two bytes of J were kept in page zero (and address
modification is not used)? Show your work.

2. *(a) Specify the changes to instructions in the subroutine DIV of section 40
if immediate data modification is used for DDATA1 and DDATA2.
(b) How many bytes, and how many cycles (maximum only), are saved if
this is done? How does this compare with the savings when DDATA]
and DDATA? are kept in page zero, as in exercise 1(b) of section 74?7

#3 Of the various data bytes in the input and output conversion programs of
. sections 62 and 63, there is one (other than those in the tables at DECOS and
_ DECO6) which cannot be implemented with immediate data modification.

Which one is it, and why?

)

PROBLEM 4 FOR COMPUTER SOLUTION
MULTI-PRECISION MULTIPLICATION

Write a program which accepts, as input, two unsigned integers of arbitrary
length, typed in on one line each, and produces, as output, the result of multi-
plying them. '

Your program should have two arrays (call them M1 and M2) for the digits of
the two numbers to be multiplied, and another array (call it M3) for the product.
It should store one decimal digit of each number (the decimal digit itself, not
the character code for this decimal digit) in one byte of the corresponding array.
It should use a method similar to the one we are all familiar with from grade
school, to multiply these numbers. When you multiply two digits, you get a
two-digit number; you carry the first digit and bring down the second one. (Do
not use MULT from the text. Either use repeated addition—3 X 8 is 8+8+8,
for example—or else construct some tables first and then use table lookup.)

As before, use GETLNZ to input each of the numbers to be multiplied, and
make sure that you remember about GETLNZ using the A, X, and Y registers
for its own purposes. Print out the product after you are done, and then go back

to read another pair of numbers.




81. RELATIVE ADDRESS
MODIFICATION

Relative addresses, as well as immediate data, can be modified. ‘One use we
can make of this is to implement the computed GO TO statement of FORTRAN, or
the ON . . . GOTO statement of BASIC. Thus, for exarnple, either of the two
statements

ON K GOTO 11, 12, 13, 14, 15 (BASIC)
Go TO (11, 12, 13, 14, 15), K (FORTRAN)

goesto 11ifK = 1,10 12ifK = 2,t013ifK = 3,t014ifK = 4, and to 15ifK = 5.

Suppose now that K is in the X register, and that the labels 11, 12, 13, 14,
and 15 are represented, in assembly language, by L11, L12, L13, L14, and
L15, respectively. Then we might write

DEX S IFK =1,.
BEQ L1l . GO TO L11

DEX . IF K = 2,

BEQ L12 ;GO TO L12

DEX . IF K = 3,

BEQ L13 . GO TO L13

DEX . IFK =4, GO TO
BEQ L14 .. Ll14, OTHERWISE
BNE L15 . GO TO L15

This takes 14 bytes* and either 5, 9, 13, 17, or 19 cycles, depending on the
value of K, with 12.6 cycles as the average. (Of course, we are assuming here
that K actually is between 1 and 5.)

Now let us see how we can improve this by using a modified relative address,

in an instruction called MODREL, of the form

MODREL  BNE *

*Note the use of BNE (which always branches, here), rather than IMP (sce section 27). If JMP were
used, this sequence would take 15 bytes.
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which- will be modified into a branch to any of L11, L.12, .13, L14, and L15; and
all the relative addresses needed here are kept in a table. Let the instruction
immediately following MODREL have the label MODR1; then MODR1+4r = p,
wherte r is the relative address corresponding to the branch address b, and this
implies that r = h—MODRI1. Our table of relative addresses may therefore be
defined by

RELADS BYT L11 - MODR1
BYT L12 — MODR1
BYT L13 — MODR1
BYT L14 — MODR1
BYT L15 — MODR1

Our computed GO TO statement may now be implemented as follows, under

“the same assumptions as before:

LDA RELADS-!1,X ; LOAD RELATIVE ADDRESS FROM
STA  MODREL+!1 ; TABLE AND STORE IT
MODREL BNE * ; GO TO MODIFIED ADDRESS

MODR1  (next instruction)

Note that we ‘can’t use JMP for the modified address, because JMP takes an
ordinary, 16-bit address. We have to use a conditional branch; but what happens
if the condition is not satisfied? The use of BNE solves our problems quite
nicely. Let us suppose, for example, that K is 3. We load RELADS+2 (that is,
RELADS—1+3) into the A register. This is L13—MODRI, and it is presum-
ably not zero, so that, after we store this number (call it 7) in the second byte of
MODRELthe BNE actually branches; and, by the rules of relative addressing,
it branches to MODR1+r = MODR1+(L13—MODR1) = L13, which is where
we want to go.

(What is delightful about this trick is that it works even if the BNE does not
branch. This will happen only if the relative address is zero; but, by the rules of
relative addressmg, such a BNE would go to the next instruction anyway—even
if it did branch/ This is quite common, in fact, since L11, for example, could
follow MODREL immediately. In this case, the label MODR1 should appear on
a line by itself. In LISA this is done by writing a colon after the label; thus
MODRI: is written in this case.)

The implementation above takes 13 bytes, eight for the instructions and five
for the table. It takes 11 cycles, or 10 if the BNE does not branch, as noted
above. Hence this is a better implementation of the computed GO TO with
respect to both space and time. In general, if there are five or more branch
instructions in a computed GO TO, both space and time are saved by relative
address modification.

Of course, we have to make sure that the calculated relative addresses are all in
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the proper range (from —128 to 127). If this is not the case,-one can branch to a
jump (JMP) instruction, which has an arbitrary 16- bit jump address. It should
also be mentioned that the computed GO TO may also be implemented by using an
indirect address, taken from a jump table; this, however, would require two
bytes, rather than just one, to be stored. Still another alternative involves push-
ing this two-byte address, and then using RTS to pull it and jump to it.

EXERCISES

*1. We have noted above that the relative address modification program of
this section takes 10 or 11 cycles, as opposed to an average of 12.6 cycles
for the alternative. Can you think of any circumstarices under which this is
not, in fact, an improvement? How common would you expect those cir-
cumstances to be, in practice?

2. Suppose that all the branches, in the program of this section, go forward.
Under these circumstances, is there another conditional branch instruction
which could be used instead of BNE“’ If so, is it an improvement over
BNE? Why or why not?

3. Consider the following program, which uses relative address modification:

STX  BRANCH+!1

LDA Q
BRANCH BNE *

LSR

LSR

LSR

LSR

LSR

LSR

LSR

STA Q

*(a) Explain in words what this does. Assume that the X register contains
an integer from O through 7.
(b) What happens if the BNE does not branch? Is what happens in this
case ‘‘correct’’ in some sense?
*(c) How much time does this algorithm take, for each value of X from 0
through 7, if the BNE does in fact branch? Show your work.
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It is quite common for a program to work with a large number of character
strings, which are kept in an array. These might be names and addresses of peo-
ple; or, possibly, names and addresses (in the technical sense) of variables in a
program.

If all the strings in an array have the same length, then we can use techniques
we have already learned. For example, if every string is three characters long,
we have an array of three-byte quantities, like the arrays of two-byte quantities
that we studied in section 32. Most of the time, however, this wiil not be the
case. Names tend to have widely varying lengths, whether they are the names of
people or of program variables.’

In general, dn array of strings is a long array. Even if there are fewer than 256
strings, and even if no string has a length greater than 256, it is quite unlikely that
the total number of characters in all the strings can be restricted, in real applica-
tions, to be not greater than 256.

Suppose that we keep all our strings in sequential order, and precede each
string by its length, as follows:

>

Y
w\“"‘& e’& X v\é‘\x
& STRING | ¥ sTRING 2 , \¥  STRING 3 N
L |
& N
quv(ﬁ’ (,@ :
QQ 5Q

e

in an array called SPACE. Suppose that we have another array called T, such
that T(J) contains some information that we are keeping about string J. (To
make things easier, we will assume that T is an ordinary, short array of bytes.)

Let us now consider the process of searching through all these strings, to find
one which is the same as another string called NAME which is kept in the same
way—that is, preceded by its length. At the end of this process, if N is equal to
string J, we wishto leave J in the X register. This will make it easy, for exam-
ple, to look at the associated information T(J).

276
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We will use post-indexed indirect addressing, and keep the address of the
beginning of the current string in the two zero-page locations ZP and ZP+ !1.
The instructions LDA (ZP),Y and CMP NAME,Y will then serve to compare
one character of the current string with one character of the string called
NAME. Here Y starts at the length of NAME and decreases to zero. (If the
Jength of the current string is not the same as the length of NAME, the strings
cannot be equal, and we do not even bother comparing them.)

If the strings are not the same, then we add the length of the current string,
plus one (because of the length byte), to the, two-byte quantity in ZP and
7P +!1. This will set these two locations to the address of the beginning of the
next string. We are always looking at string J, where I is in the X register; and,
every time through the loop, we compare the X register with NSTR, the total
number of strings. If they are equal, then NAME is not in our array of strings,
because these range from string zero through string NSTR—1. In this case we
can put NAME into the array, if we want to, and update NSTR.

At the beginning of the program, we must put the address of the array
SPACE into the zero-page locations, so as to initialize them for treatment of
string zero. The resulting program is shown in Figure 27. Note that we are using
a new kind of loop here, in which the comparison (with CPX) takes place at the
beginning of the loop. This has the consequence that, if NSTR is zero, the loop
is not done at all. (In most loops, the loop is done once, even if the loop count is
zero.) The program jumps to FOUND if the given string is found, and to NOTF
otherwise; if it jumps to FOUND, then NAME is equal to string J, where J is in
the X register. :

Suppose now that we wished to find the J-th string, where J has just been cal-
culated. Using the method described above, we would have to look through all
strings from the first through the J-th, and this takes quite a bit of time. For this
reason, our method should be used only when we look through our strings in
order (string 1, string 2, and so on). Another more general method of keeping
arrays of strings is discussed in section 85.

EXERCISES

1. Specify the changes to the program of Figure 27 if, instead of a maximum
number of strings called NSTR, we keep an extra zero-byte after the end
of the last string. (To the program, this looks like another length byte,
except that it is zero.)

*2.  Specify the changes to the program of Figure 27 if there is another array,
called LB, which contains all the length bytes. (Thus LB(J) is the length
of the J-th string, and this length byte is not contained in the array called

SPACE.) Note that ZP and ZP+!1 should contain the address of the byte
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before the first byte of the current string, just as before, even though this
is no longer a length byte. (Assume that the string NAME is still preceded
N by its own length byte.)

3. Specify the changes to the program of Figure 27 if there are no length
bytes; instead, each string is terminated by a zero-byte. (Note that this
does not resemble the zero-byte of exercise 1 above; NSTR is still
required.) You may assume that the place in the program where ‘‘we are
done—NAME is string J°* has the label DONE. This time, assume that
NAME is not preceded by a length byte; and keep the address of the firss
byte of the current string (rather than this address minus 1) in ZP and
ZP+!1 and move forward, rather than backward, through NAME during

‘ the comparison. (Start the loop at ALPHA with INY.)

LDX #$FF ; SET STRING INDEX TO -1
, LDA /SPACE ; SET THE ZERO-PAGE LOCATIONS
STA ZP+11 ;  ZP and ZP+!1 TO BE THE
.'LDA #SPACE ;  ADDRESS OF STRING ZERO
B . STA ZP ’ ; (THE FIRST ADDRESS OF SPACE)
LOOP INX ,; INCREASE THE STRING INDEX
CPX NSTR ; IF EQUAL TO THE TOTAL NUMBER
BEQ NOTF ; OF STRINGS, GO TO NOT-FOUND
LDY #!0 ; GET THE LENGTH OF THIS STRING
LDA (ZP) ;Y " ; (NEED Y=0 FOR THIS INSTR.)
CMP  NAME ; IF UNEQUAL TO THE LENGTH OF
BNE PROC1 ;  NAME, STRINGS CANNOT BE =
I TAY ; INITIALIZE Y TO STRING LENGTH
AILPHA  LDA (ZP) ,Y ; COMPARE A CHARACTER OF STRING
’1 CMP NAME,Y ; X WITH A CHARACTER OF NAME
BNE PROC ; IF NOT =, STRINGS ARE NOT =
DEY ; IF = PROCEED TO NEXT CHAR.
BNE ATPHA ; ARE THERE ANY MORE CHARACTERS
BEQ FOUND ; IF NOT, STRING HAS BEEN FOUND
PROC I_'/DY #!0 ; RELOAD LENGTH OF STRING X
LDA (zP),Y ; (NEED Y =0, JUST AS ABOVE)
PROC1 CLC ; ADD 1 TO LENGTH OF STRING X
ADC #11 ;  (TO PASS OVER LENGTH BYTE)
o ADC P ; ADD TO ADDRESS IN ZP AND
AR STA ZP ; ZP+!1, SO THIS BECOMES THE
3 1 BCC  LOOP ;  STARTING ADDRESS OF THE NEXT
; INC Zp+11 ;  STRING IN THE ARRAY — — THEN
: | BCS LOGP ; BRANCH BACK TO LOOP

Figure 27. A Program to Search an Array of Strings.




83. ARRAYS OF HEXADECIMAL
DIGITS

In section 32, we considered arrays of quantities, each of which is two bytes
long. We can also consider arrays of quantities, each of which is half a byte
long. Half a byte is sometimes called a nybble. (Half a bite of food is called a
nibble of food.) A nybble, then, is four bits, or one hexadecimal digit (or one
decimal digit in a packed string, as in section 66).

If we have an array of nybbles, then storing each nybble in a separate byte
wastes a considerable amount of space. If we have two arrays, T1 and T2, of
hexadecimal digits, we can keep T1(J) in the first four bits of T(J), and T2(J) in
the second four bits of T(J), for an array T of bytes. The elements T1(J) and
T2(J) may then be obtained by shifting and masking. In what follows, however,
we will assume that we have one array of hexadecimal digits, two of which are
kept in each byte.

Suppose that H1 is such an array. Byte O of H1 contains H1(0) and HI(1);
byte 1 of H1 contains H1(2) and H1(3); and so on, as in Figure 28. In general,
byte k of H1 contains H1(2k) (in its first four bits) and H1(2k+1) (in its second
four bits).

BYTE 0 H1(0) | HI(D)
BYTE 1 H1(2) | HI(3)
BYTE 2 Hi@) | HI(5)

BYTE k| HI(2k) | HI(2k+1)

Figure 28. A Serial Array of Hexadecimal Digits.
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Now suppose that the A register contains J, and that we want to load H1(J),
We saw in section 32 that we would have to multiply J by 2 first if we had an
array of two-byte quantities. For an array of nybbles, we have to divide J by 2
first. ‘Moreover, we have to have some way of knowing whether to look at the
first four bits of the resulting byte, or at the second four bits.

Fortunately, we can do this efficiently because LSR not only divides the A
register by 2 but also shifts its rightmost bit into the carry flag, as we saw in
section 31. Note that the rightmost bit of any integer indicates whether it is even
or odd. Thus H1(J) may be loaded, under these conditions, as follows:

LSR ; DIVIDE J BY 2
TAY ; LOAD BYTE CONTAINING HI (J)
IDA  H1,Y ;  AND PRESERVE THE CARRY FLAG
BCC ALPHA ; LEFT OR RIGHT HAND 4 BITS
AND #%00001111 ; RIGHT HAND 4 BITS (CARRY IS
BCS BETA : ; SET SO THIS ALWAYS JUMPS)
ALPHA  LSR - ;  LEFT HAND 4 BITS ——
’ LSR ;  MOVE THESE TO RIGHT
, LSR ;  (CLEARS LEFT HAND- 4
LSR ;  BITS AT THE SAME TIME)

BETA {hext instruction)

Like any array, an array of hexadecimal digits is most commonly processed
in order from beginning to end. The following subroutine stores a hexadecimal
digit in such an array and advances to the next one, so that it can be called n
times to store the digits H2(0) through H2(n—1) in that order. The subroutine
keeps a byte index into the array H2 in the Y register, and it also keeps a flag,
called HFLAG; if this is zero, the next nybble is stored in the left-hand four bits
of the next byte, while if it is equal to —1, the next nybble is stored in the
right-hand four bits:

Here HFLAG and the Y register must be initialized, as by

HSTORE INC HFLAG ; ADD 1 TO HFLAG — — IF IT
Lo BNE  HST1 ;. WAS —1, IT IS NOW ZERO
S ORA H2,Y ; INSERT LEFT HAND 4 BITS
. TA H2,Y ; STORE IN CURRENT BYTE
v “RTS ;  AND QUIT
} | HST1 ASL ; SHIFT LEFT HAND 4 BITS
T ASL :  TO LEFT, AND
. ‘ 1 ASL STORE THEM IN
! ‘ ! ASL THE FOLLOWING BYTE
P INY (INCREASE BYTE INDEX,
. STA H2,Y THEN STORE)
SR IDA  #$FF : PUT —1 BACK IN HFLAG FOR
o STA  HFLAG NEXT TIME HSTORE IS CALLED
RTS AND QUIT
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LDY *!0 ; STARTING VALUE OF THE
STY  HFLAG ;  INDICATOR IS ZERO,
DEY ; AND THAT OF Y IS —1

An alternative way of keeping a flag like HFLAG is by using its rightmost bit
only. The flag can now be changed from zero to one, or vice versa, with the sin-
gle instruction INC HFLAG (or DEC HFLAG); it may be tested by shifting it
into the carry flag (with LDA HFLAG and LSR) and then doing a BCC or BCS.

The APPLE monitor has three subroutines for printing nybbles: JSR PRHEX
prints one nybble (the right-hand nybble) from the A register; JSR PRBYTE
prints two nybbles from the A register; and JSR PRNTAX prints four nybbles,
two from the A register and then two more from the X register. These may be
declared in a LISA program by '

PRHEX EQU $FDE3
PRBYTE EQU $FDDA
PRNTAX  EQU $F941

EXERCISES

*1. Specify the changes to HSTORE which would be made if HEX2 were a
long array. Use address modification; remember that both STA instruc-
tions, as well as ORA, must have modified addresses. (Hint: First deter-
mine at what point, in the program, the address modification must take
place.)

2. ThelettersE, T, A, O,I, N, S, H, R, D, L, and U are the 12 most com-
mon letters in English words. Suppose that we have a file composed
entirely of words (such as a word processing file). We may decrease the
amount of space necessary to keep this file by translating it into a nybble
code. In this code, the blank corresponds to the nybble 0; each of the 12
letters above corresponds to one of the nybbles 1 through 12; and any
other character that may occur in the file corresponds to one of the nyb-
bles 13, 14, or 15, followed by a further nybble which denotes the specific
character involved. (Note that there are 61 legal codes: 0 through 12; 13-0
through 13-15; 14-0 through 14-15; and 15-0 through 15-15.) Describe, in
words, the operation of a program to translate a file into this form.
Assume that the file is contained entirely in memory, as an array C, start-
ing with C(1), and that the new file is also entirely in memory, and is
formed by using the subroutine HSTORE of this section. Also assume
that the original file ends with a zero-byte, and that, in the new form, it
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ends with the code 15-15. Specify explicitly all calls to HSTORE and to
the initialization of HSTORE.

Write a subroutine, using PRBYT, which is equivalent to PRNTAX. Try
to use as few instructions as possible. (Hint: see the end of section 61,
Note that PRBYT does not use the X register.)




84. SORTING

The word “‘sorting’’ has a very specific meaning in computing. To sort means
to put a collection of data in some order; normally, ascending order from the
smallest to the largest.

Suppose we have a collection of numbers: 212 312, 213, 202, 415, 617,
305. These are kept in an array T, with T(1) = 212 and T(7) = 305. We w1$h to
arrange them into ascending order: 202, 212, 213, 305, 312, 415, 617. In this
order, they can go in another array U, with U(1) = 202 and U(7) = 617. Or we
can have an in-place sort, in which case the data go back in the array T, with
T(1) = 202 and T(7) = 617. '

The easiest way to do in-place sorting is as follows. Go through T and look at
pairs of adjacent numbers: T(1) and T(2), then T(2) and T(3), and so on, up
through T(6) and T(7), in this case. For each pair, if the numbers in the pair are
in order—that is, T(J) < T(J+1)—Ileave them there. Otherwise, interchange
them; that is, set T(J) = T(J+1) and vice versa.

When you have finished one pass through the array (starting with T(1) and
T(2), and ending with T(N—1) and T(N), where N = 7 in this case), go back
and do another pass. Keep doing passes until you can go through one whole
pass without making any interchanges; that is, each pair, T(J) and T(J+1), is in
order. At that point, you are done.

In BASIC, this might be done as follows:

10 J=1

20 K =0

30 IF T(J) <=T(J+1) THEN 80
40 Z =TW)

50 T(J) =TJ+1)

60 TG+1) =2

70 K=1

80 J =J+1

90 IF J <> N THEN 30

100 IF K <> 0 THEN 10

The variable K is a flag. Every time we do an interchange (lines 40 through 60),
we set K = 1(line 70). At the beginning of every pass, we set K = 0 (line 20). If we
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can get through a whole pass without doing an interchange, then K will still be zero
(line 100).

The variable Z is used because we cannot just set T(J) =T({J+1), and
T(J+1) = T(J), in order to do an interchange. If we did that, we would give T(J)
and T(J+1) the same value, when we want them to have each other’s values.

The test at line 90 is peculiar because it skips the last case on purpose. That
is, Jis equal to 1, 2, 3, and so on up through N—1, but J is never equal to N,
This is because, when J = N—1, we are comparing T(J) and T(J+1); that is,
T(N—1) and T(N). This is the last comparison to be made.

The same sorting program, done on a serial array T of two-byte quantities
{(which would be necessary to keep a number as large as 617), is shown in Fig-
ure 29. Note that the flag K is now either zero (meaning ‘‘no interchanges™), or
non-zero, and that it is set to a non-zero value by adding 1 to it. The variable J
has been assigned to the X register (actually, 2J is kept in X, and ranges from 2
to 2N). The variable Z, in the BASIC program, is not needed in the LISA pro-
gram, since we can 1nterchange two quantities by using two registers (as we
noted first in section 8). Note the offsets carefully; since T starts.from T(1), the
element T(J) is accessed by T—12,X (lower half) and T—!1,X (upper half) if 2J
is in the X register. The element T(J+1) is then accessed by T,X (lower half)
and T+!1,X (upper half), under these same conditions.

A flag like K, meaning ‘‘there has been an interchange’ if it is not equal to
zero, is called a logical flag, and is said to be true if it is non-zero and false if it
is zero. LISA allows you to use BFL (Branch on False) instead of BEQ, and
BTR (Branch on True) instead of BNE, if you so desire. In particular, we could
replace BNE ALPHA by BTR ALPHA as the final instruction in Figure 29.

v

EXERCISES

1. The way in which K is used as a flag in Figure 29 is open to the objection
that it is poss}ble to set K to zero by adding 1 to it (if it is equal to 255).
However, inthe program of Figure 29, this can never happen. Why not?

*2. In the BASIC program of this section, why is the test made for
T(J) =< T(J+1), rather than T(J) < T(J+1)? (Hint: Consider a very simple
case, with N = 2 and T(1) = T(2), and walk it through.)

3. Specify the changes to Figure 29 if immediate data modification is used.
How many bytes are saved if this is done? (Hint: Clearly the variables in
the array T cannot be treated as immediate data. What other variables in
this program can be so treated?)
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ASL
STA
AIPHA  LDX
STX

BETA LDA

DECIDE BCS

GAMMA INX

N

TWON
#10

K

#12
T+11,X
T-11,X
DECIDE
T,X
T—12,X
GAMMA
T, X
T-12,X
T-12,X
T, X
T-11,X
T+11,X
T+11,X

T-11,X
K

TWON
BETA
K
ALPHA

3

’

CALCULATE 2#N (SERIAL ARRAY
OF N TWO-BYTE QUANTITIES
IS 24N BYTES LONG)

STARTING FLAG VALUE IS ZERO

STARTING INDEX VALUE IS 2
(THAT IS, 2+J, WHERE J = 1)

COMPARE T(J+1) WITH T (J)

WHERE 2+J IS IN X REGISTER
COUNTING ELEMENTS OF T FROM
T(1) THROUGH T(N). IF T(J+1)
IS GREATER OR EQUAL (T (J)
LESS OR EQUAL), SKIP AHEAD

NOTE THIS MUST BE REDONE IF WE
TOOK THE BCS BRANCH ABOVE.
HERE WE INTERCHANGE, LOWER
HALVES FIRST (NOTE THAT Z
IS NOT NEEDED) .

NOW DO THE UPPER HALVES. NOTE
THAT WE' CAN LOAD Y, INDEXED,
BUT NOT STORE Y, INDEXED (EX-
CEPT IN PAGE ZERO), SO INSTEAD
WE -TYA- AND STORE A, INDEXED.

SET THE FLAG (TO NON-ZERO)

ADD 2 TO THE INDEX (FOR THE
NEXT TWO-BYTE QUANTITY)

IF 2#J <> 2#N (I. E., J <> N),
THEN DO THE NEXT PAIR
IF K <> 0 (THERE HAVE BEEN IN-
TERCHANGES), DO ANOTHER PASS

Figure 29. Sorting an Array of Two-Byte Quantities.




85. ALPHABETIZING

Alphabetizing a list of names may be thought of as a variation of sorting.

To make this easier to see, suppose that the two-byte quantities which were
sorted in Figure 29 are thought of as two-character quantities. Notice that we
start by comparing the bytes at the left. If these are unequal, then this is the only
comparison we make. If they are equal, then we compare the bytes at the right.

This, however, is exactly how we would compare two-character quantities
with respect to alphabetical order. Consider, for example, the quantities ME,
OH, and MY. When compariig ME and OH, we compare only the M and the
O; the M comes first, so ME comes before OH. The same thing happens when
comparing MY and OH (even though H comes before Y). When comparing ME
and MY, the M’s are the same, and so we compare E and Y. Since E comes
first, ME comes before MY. '

Even the comparison of the individual character codes corresponds to alpha-
betical order. For example, E comes before Y, and we can test this by noting

- that the character code for Y is D9 (hexadecimal), and the character code for E

1s C5, which is less than D9 .*

Comparing two strings which are more than two characters long is now an
extension of thls idea. We compare the first characters, then the second charac-
ters, then the tHird characters, and so on, of the two strings. As soon as we get
to a pair of characters which are not equal, then we base our decision on those
two characters. Thus with the words LEONINE and LEOPARD, we base our
decision on the fourth characters, N and P, of the two words. Since N comes
before P, LEONINE comes before LEOPARD.

Special care must be taken if the two strings have different lengths. You must
compare m characters, where m is the smaller of the two lengths. If these char-
acters are all equal, then the shorter string always comes first. Thus with
BOUGH and BOUGHT, BOUGH comes first, after the first five characters of

*This is true whether a signed or an unsigned comparison is made, since the leftmost bits of the char-
acter codes of all the alphabenc characters are the same—an important property of the ASCII charac-
ter code.
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the two strings have been compared. Similarly with IRANIAN and IRAN,
TRAN comes first. .

Let us now consider the alphabetizing process as a variation on the BASIC
program of the preceding section. The only line that has to be changed is line
number 30; this should be changed to some equivalent of the following: “ITA)
precedes TJ+1) in alphabetical order, or if T(J) = T(J+ 1), go to 80.”” The rest
of the logic of this BASIC program is exactly the same as before.

In the assembly language program of Figure 29, this means that the six state-
ments from BETA to DECIDE, which correspond to line number 30 of the
BASIC program, should be changed to the sequence of Figure 30. A number of
special tricks, used in this sequence, need to be explained. .

The basic idea is to use an address table. We still have a serial array T of
two-byte quantities, as in Figure 29; but, this time, the two-byte quantities are
the addresses of strings. The strings themselves are kept as in section 82, but we
never interchange the characters in the strings—only the addresses. At the end
of the program, we will have a table of addresses of strings in ascending order.

DA T,X . USE ADDRESSES IN ADDRESS
STA ZP1 . TABLES, FOR T(J) AND
DA T+!1,X . T(J+1), TO SET UP THE
STA ZP1+!1 . ZERO PAGE LOCATIONS,
DA T+!2,X . ZP1 AND ZP2, WHICH WILL
STA  ZP2 . THEN CONTAIN THE STARTING
LDA T+!3,X . ADDRESSES OF THE TWO
STA ZP2+!1 . STRINGS TO BE COMPARED.
LDY #!'0 . START WITH LENGTH BYTES
LDA  (ZP2),Y . COMPARE THE TWO LENGTH
CcMP  (ZP1),Y . BYTES TO GET THE SMALLER
BCC  SMALR . AND PUT IT IN A-REGISTER
LDA  (ZP1),Y . RECORD IF THE SECOND WAS
SMALR ROR LFLAG . SHORTER (LFLAG SIGN = 0)
TAX : MINIMUM LENGTH TO X
CCHAR  INY : MOVE TO NEXT CHARACTER
DA (ZP2),Y : COMPARE ONE CHARACTER OF
CMP  (ZP1),Y :  EACH STRING. IF THEY ARE
BNE DECIDE . UNEQUAL, READY TO DECIDE
DEX . DO THIS M TIMES, WHERE
BNE CCHAR : M IS THE MINIMUM LENGTH
ILDA LFLAG . IF SECOND WAS SHORTER, IT IS
BPL  EXCH : LESS, SO OUT OF ORDER
DECIDE BCS GAMMA . IF SECOND >=, NOT OUT OF ORDER
EXCH (next instruction)

Figure 30. Alphabetizing an Array of Strings.
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(The addresses themselves will not be in ascending order; rather, the first
address, at T and T+!1, will be the address of the string that comes first, alpha-
betlcally, and so on.)

Two zero-page locations, ZP1 and ZP2 (each two bytes long), are used. The
first step is to compare the lengths of the two strings, and the smaller length is
put in the X register, as the loop count. At the same time, we save the carry flag
(from the compare) in the sign of LFLAG. This is done by rotating LFLAG to
the right, which rotates the carry flag into the leftmost bit of LFLAG.

Now we compare M characters, where M is the loop count as above. If these
are not all equal, we can make a decision at DECIDE, just as before. If they are
all equal (correspondingly), we have three cases:

(1) The lengths of the two strings were equal In that case the two strings are
equal, and we want to go to GAMMA. -

(2) The first string was shorter. In that case the first string precedes the sec-
‘ond one; so the two strings are in order, and again we want to go to

- GAMMA. ' '

(3) The second string was shorter. Note that this is the case in which the
carry flag that was saved, above, will be zero (in the other two cases, it
will be 1). In that case the second string precedes the first one; so the two
strings are out of order, and we want to do an exchange. Thus, at this
point, we go to EXCH (that is, we exchange) if LFLAG is positive or
zero; that is, if its sign flag (the saved carry flag) is zero.

EXERCISES
,
1. Just before CCHAR in Figure 30, after we have calculated the minimum
length, there is a TAX. Why don’t we just calculate the minimum in the X
register, using LDX and CPX instead of LDA and CMP?

2. Instead of ROR LFLAG, why can’t we just use PHP (saving the entire P
register, including the carry flag) and then, later on, PLP (which restores
the P register) and BCC EXCH, instead of LDA LFLAG and BPL EXCH?

3. Suppose that, in the four instructions just preceding SMALR in Figure 30,

we changed the ZP2 to a ZP1, and the two instances of ZP1 to ZP2.

*(a) Would the same quantity be calculated at SMALR?
*(b) What problem would arise latert, just before DECIDE?




86. SEARCHING A SORTED ARRAY

Ari important reason for keeping arrays sorted is that searching is speeded up by
a considerable amount, especially when the arrays are large. We shall now
show how to perform this fast searching on the 6502, using the idea of binary
search which we discussed briefly in section 49. _

We will assume that we are looking for some quantity V in an array called T,
with indices from T(1) through T(N), where N is a variable. The basic idea of
this search is to keep dividing the table in half. At every stage, we are looking at
only a part of the table, which is T(FIRST) through T(LAST). Initially, this is
the whole table, so that FIRST is 1 and LAST is N.

The table is divided in half by taking the average of FIRST and LAST; we
may call this average MIDDLE. We now see if V is in the first part of the table,
from T(FIRST) through T(MIDDLE). We do this by testing whether V is
greater than T(MIDDLE); if it is, then, because the table is sorted, V must be in
the second part of the table (from T(MIDDLE+ 1) through T(LAST)), if it is in
the table at all. Otherwise, it is in the first half of the table.

In either case, FIRST and LAST must be updated. If V belongs in the first
part of the table, from T(FIRST) through T(MIDDLE), then MIDDLE becomes
the new LAST, and FIRST stays the same. If V belongs in the second part of
the table, from T(MIDDLE+1) through T(LAST), then MIDDLE+1 becomes
the new FIRST, and LAST stays the same.

We keep dividing the table in half, in this way, until the size of the table has
been reduced to 1. When this happens, FIRST and LAST will be equal. At this
point, V is either equal to T(FIRST), or it is not in the table at all.

A program to perform this search on the 6502, assuming that T is a table of
unsigned 8-bit quantities, is given in Figure 31. Since the atray T starts with
T(1), offsets are used as in section 23, and T—11,X rather than T,X appears
when reference is made to the X-th element of T. The program has two exits; if
V is not in the table, the program exits to L4, while if V is in the table, the pro-
gram exits to L5 with the table index in the X register.

Calculating the average of FIRST and LAST involves a trick which is quite
useful whenever an average must be calculated. Of course, we add FIRST and
LAST, and then divide by 2, using a shift. The problem is that FIRST+LAST
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might be greater than 255; if it is, then the carry flag will be set, while other-
wise this flag will be cleared. The trick is to divide by 2 using ROR instead of
LSR. This shifts the carry flag into the leftmost bit of the A register, which, in
this case, is exactly what we need.

We test V greater than T(MIDDLE) by testing T(MIDDLE) less than V,
using the carry flag, as suggested in section 28. This program may be easily
adapted to searching two parallel arrays S and T for a 16-bit quantity in V and
V+!1, by changing the two comparisons. to 16-bit comparisons as indicated in
section 29; that is, immediately following the TAX, we write

IDA S—11,X ; COMPARE T (MIDDLE)
CMP  V+I1 i WITHV ——
BNE DECIDE ;  UPPER HALVES FIRST

(where DECIDE is the BCC, as in section 29); and immediately following the
LDX, we write . :

LDA S—11,X ; COMPARE T (FIRST)

: CMP  V+!1 i WITHV ——

BNE L4 ;  UPPER HALVES FIRST

The loop is executed 7 times for a table of size 2°. For a table of size k, the
number of times that the loop is executed is the logarithm of k to the base 2,
rounded up to the nearest integer; if this number is n, then 2"! < k < 20, by
the fundamental properties of logarithms. (In your further study of computer sci-
ence you will quite often encounter logarithms to the base 2; for example, there
are methods of sorting n numbers in n log, n steps. See also the table of logarithms
in the exercjses to section 49.) It is remarkable that this particular loop
takes 42 cycles, regardless of whether the BCC goes to L2 or not, and provided
the BNE actually branches back to L1. For a table of size 2, the total number of
cycles is in fact 42n+27, plus one extra cycle if V is actually in the table.

We may note that the line L1 LDA FIRST may actually be eliminated from
this program (and the label L1 moved down to the CLC), reducing the cycle
time above to 38n+27. This is because FIRST is already in the A register,
whether we enter from STA FIRST or from BNE L1, since LDA FIRST appears
just before BNE L1. Further improvements in the program are suggested in the
exercises.

Searching sorted tables in this way works well when the tables are constant.
When a table changes during the run of a program, particularly when it is con-
structed as the program proceeds, this method is not necessarily as good,
because keeping a table sorted while it is growing is a time-consuming process.
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SET INITIAL VALUE
OF LAST
SET INITIAL VALUE
OF FIRST
TAKE AVERAGE OF FIRST
AND LAST BY COMPUTING
(FIRST+LAST) /2 = MIDDLE
SHIFT IN CARRY (IF
MIDDLE > 127) —— TO X
IS T (MIDDLE) < V —— IF
SO, V BELONGS IN
SECOND HALF OF TABLE
FIRST HALF OF TABLE, SO
UPDATE LAST AND BRANCH
SECOND HALF OF TABLE, SO
UPDATE FIRST
DO ALL THIS AGAIN UNLESS
TABLE SIZE IS NOW 1 — —
THAT IS, FIRST = LAST
IS T (FIRST) = V —— IF
NOT, THEN V IS NOT IN
THE TABLE AT ALL. IF SO,
THEN ITS INDEX IS IN X

(found, index in X)

Figure 31. A Program to Search a Sorted Array.

EXERCISES

*1. Consider the instruction at L3 in the program of Figure 31. Can this be
replaced by TXA? Explain.

In the program of Figure 31, can the label L1 be placed on the ADC
instruction? Why or why not?

In the program of Figure 31, can the LDX FIRST be climinated? Why or
why not?




87. TWO-DIMENSIONAL ARRAYS

In many versions of BASIC, we can use array elements such as T, if we
have declared T by a DIM T(m,n) statement for some integers m and n. The
same is true in FORTRAN, although DIM is replaced here by the word
DIMENSION (or INTEGER, REAL, or the like). An array such as T is called a
two-dimensional array. ‘

. If we have an m-by-n two-dimensional afray, as above, then mn is the tota]
number of elements in the array. In assembly language, we reserve this many
elemients, by means of DFS, just as with one-dimensional arrays. For example,
for a 10-by-15 array T of single-byte quantities, we would write T DFS !150

(since 150= 10 X 15).

There is now a problem, however, as to how to make reference to T( LI). We
cannot put I in'the X register and J in the Y register, for example; we have to cal-
culate a single quantity, and put it in either X or Y. What is this quantity, and how
is it calculated? There are actually two well-known ways to calculate it, one based
on the FORTRAN language, and the other based on the language PL/1.

In PL/L, the order of the elements inan m-by-n array T is T(1, 1), T(1, 2), and
so on up through T(1, n); then T(2, 1); then T(2, 2), and so on through the
array. In FOBTRAN, on the other hand, the order is T(1, 1), T(2, 1), and so on
up through T(m, 1); then T(1, 2); then T(2, 2), and so on. Thus, in FORTRAN,
the order of these elements follows through the columns of the two-dimensional
array, whereas in PL/I it follows through the rows of this array (see Figure 32).
We speak of a column representation in FORTRAN, and a row representation
in PL/IL.

In assembly lamguage, we can use either a column or a row representation,
whichever we like. Suppose that we have Just calculated T and J, and we wish to
use an instruction like LDA T,X to load T(I, J). Then the quantity that we must
calculate and put in the X register is

I=D*n+J-1 (row representation)
J—D#m+I-1 (column representation)

for an m-by-n array T. We call the above formulas the index formulas for the
two representations; the quantity in the X register is the index of T(I, J).
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(b) Row representation of a two-dimensional array T

Figure 32. Two-Dimensional Array Representations.
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Let us see how these work. In the row representation, for T(1, 1), we have
I=1,J=1, and (I-1)*n+(J—1) = 0. This is correct, because if the X regis-
ter contains zero, then LDA T,X loads T, or, in other words, the first byte
of the array T, which is T(1,1). For T(l,J), in general, we have
(I-D*n+J—-1) = J—1; thus if ] = 5, the index is 5—1, or 4. Again, this is
right since the cell T+ !4 will contain T(1, 5).

For T(2, 1), we have I =2, J =1, and (I—-1)*n+(J—1) = n. The first row,
from T(1, 1) through T(1, n), takes up the first n cells of the array, and so the
next cell would have the address T+ n. Thus the index is again correct in thig
case. In the same way, we can check that the formula (I—1)*n+(J—1) works in
all cases.

In the column representation, for T(1,1), we have I=1, J=1, and
(J=1)#m+(I—1) = 0. This is correct for the same reason as before. This time,
for T(I, 1), in general, we have (J—1)*m~+(I—1) = I—1; thus if T = 7, the index
is 7—1, or 6. This is right because the cell T+!6 will contain T(7, 1). For
T(1,2), we have I=1, ] =2, and J—D)*m+(I—1) = m; the first column,
from T(1, 1) through T(m, 1), takes up the first m cells of the array, and so the
next cell has'address T+m. As before, we can continue, if we wish, and check
the formula in other cases.

Both of our formulas may be generalized in a number of ways. If T is an m-

~ by-n serial array of k-byte quantities, rather than single-byte quantities, then all

indices, as above, are multiplied by &. If T starts from T(0, 0), rather than from
T(1, 1), the index formulas turn out to be

I+n+] (row representation)
Jem—+1 (column representation)

These are the same as the previous formulas, except that 1 is not subtracted. In
fact, it is not too hard to figure out that the 1 in T(1, 1) is what is subtracted in

those formulas. ,
It might seem that index calculation is unacceptably slow on the 6502,

because of the multiplication. However, we can easily multiply by a constant (n
or m) by setting up a table of multiples of that constant, and then doing table
lookup as in section 36.

The formulas for an array T starting at T(1, 1) may also be rewritten as

I¥*n+J—(n+1) (row representation)
IEm+1—(m+1) (column representation)

and the constant n+1, or m+1, may be subtracted from T, as noted in sec-
tion 23, so that only I*n+]J or J*m+1I needs to be calculated and placed in an
index register. For example, for a 10-by-10 array, we have n+1 = m+1 = 11,
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so that a reference to T—!11,X (such as LDA T—111,X) will be a reference to
T(,J) if I#n+]J (or, respectively, J¥m-+1) is in the X register.

EXERCISES

1.

Give a BASIC statement (assuming 8-bit data) which is equivalent to each
of the following sequences of assembly language instructions. Assume that
T is a 10-by-10 array of single-byte quantities, given in a column representa-
tion starting with T(1,1), and that TENS is a 10-byte table of multlples of 10,

from TENS(1) = 10 through TENS(10) = 100.*

*(a) IDA  T+137

STA U

(b) DX L
LDA TENS—!1,X
cLe :
ADC K
TAX
IDA V

STA T-!111,X

Using an indexed DEC instruction, and not using the MULT subrotine of
section 39 (but rather TENS as in the preceding exercise), write a sequence of
instructions on the 6502 which sets T(I, J) = T(I, J) — 1, assuming thatTis a
10-by-10 array of single-byte quantities, starting at T(1, 1), and given in:

*(a) a column representation;
(b) a row representation.

Suppose that an index has been calculated, according to one of our formu-
las, and placed in the X register in order that we can make reference to
T(, J) in some instruction Z, where the array T is as in exercise 1 above. It
is now desired to make reference to T(I, J+1), using this same instruction
Z. What change must be made to the X register, if the array T is given in:

(a) a row representation?
*(b) a column representation?

*Check your answers to make sure that they contain no expressmns of the form T(e). Remember that
T is a two-dimensiorial array, and can appear only in expressions of the form T(f, g).
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The integers which are processed in BASIC are always signed, and are very
often 16 bits long. Signed 16-bit integers may be processed in assembly lan-
guage, using some simple extensions of techniques we have already learned.

In section 7, we mentioned that addition, or subtraction, of signed 8-bit quan-
tities is the same as that of unsigned 8-bit quantities. Let us see why this is so.
Suppose that P and Q are d-bit signed numbérs, with corresponding unsigned
values P’ and Q'. (If P =0, then P* = P; if P <0, then P’ = P+2¢; and simi-
larly for Q.) The result of adding P and Q' (call it S) is P’+Q" if the carry is
zero, and P'+Q'—24 if the carry is 1. If R = P+Q, and R has corresponding
unsigned valiie R’, we must show that R’ = S. There are six cases, as follows:

Signof P + + - + — - -
Signof Q°  + - — + + —
Signof R+ + - + - -~
Carry 0 1 0 1 0 1
p' = P P P p+2¢  p+2¢  p4+24
‘= Q Q+2¢ Q+2¢ Q Q Q+2¢
R = R R R+24 R R+24  R+24
P+Q"'= R R+2¢ R+2¢ R+42¢ R+2¢ R+422M
S = R R R+2¢4 R R+2¢ R+24

In each case, we can see that R’ = S.

~ We now note that the proof does not depend on the value of d. What is true
for 8-bit quantities is also true for 16-bit quantities; in other words, signed 16-
bit quantities may'/ be added, using the method of section 15, or subtracted,
itsing the method of section 17.

This does not work, however, for multiplication. We can see this even with
8-bit integers; if we multiply @ by — b, we are really multiplying a by 256 —b
(unsigned) and getting 256a—ab, when what we want is 256*—ab, because this
is the twos’ complement representation of —ab as’a 16-bit quantity.

Multiplication of signed quantities a and b, in general, proceeds as follows:

(1) Set c equal to the exclusive OR of the signs of @ and b. (Thus ¢ = 0 if
and only if a and b have the same sign.)
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(2) Seta = q; if a is negative, seta = —a.

(3) Set B = b; if bis negative, set p = —b.

(4) Multiply « by B, producing v.

(5) If ¢ is zero, the answer is v; if ¢ = 1, the answer is —y. (The same
scheme works for division.)

Negation of a signed 16-bit quantity proceeds in the same way as negation of
a signed 8-bit quantity; we subtract it from zero (as a 16-bit quantity).

Comparison of two 16-bit signed numbers starts by comparing the left halves
of the two numbers as signed 8-bit quantities. Either the method of section 54
or that of section 56 may be used. If the two left halves are equal, then the right
halves are compared as unsigned quantities. (Remember that the leftmost bit of
the right half of a 16-bit signed quantity does not function as a sign.)

Conversion of an 8-bit signed quantity to a 16-bit signed quantity proceeds by
loading the left half of the 16-bit quantity with zero for a positive quantity, and
with all one bits ($FF) for a negative quantity, as. mentioned in section 12.

Addition of an 8-bit signed quantity U to a 16-bit quantity V may be per-
formed without converting U as in the preceding paragraph. Suppose that we
add U, as an unsigned quantity, to V as in section 19. If U is a negative number
—k, then we calculate V+256—k where we want V—k, so our answer is off by
256. This can be fixed by testing U beforehand and, if it is negative, subtracting
1 from the left half of V, a process that decreases V by 256; we can then
proceed with the process of section 19. The following program does this:

LOAD 8-BIT QUANTITY U

IDA U
BPL L7 IF NEGATIVE, DECREASE V BY
DEC V+!1 ; 256 (V HAS BYTES REVERSED)

L7 CLC ; NOW ADD U TO THE

ADC V RIGHT HALF OF V

BCC L8 IF THIS PRODUCES CARRY, ADD

INC V+!1 1 TO THE LEFT HALF OF V
L8 STA V STORE NEW RIGHT HALF OF V

Similar techniques may be used to process signed n-byte quantities for n > 2.
In particular, when we compare two such quantities, we compare their leftmost
bytes as signed 8-bit integers, and all their other bytes, if necessary, as unsigned
8-bit integers. :

EXERCISES

1. What is the smallest 16-bit signed integer? What is the largest 16-bit
signed integer? (Express these as decimal integers, not as expressions
involving a power of 2.)
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Write a program to compare two 16-bit signed integers U and V, branch-
ing to LESS if U< V. Use the method of section 56 for the required
signed comparison.

Write a program to subtract an 8-bit signed integer U from a 16-bit quan-
tity V, kept with bytes reversed, without converting U to 16-bit form. Use
a variation on the method of the final program of this section.




89. NEGATIVE INDEXING

In section 22 we saw that loops in which the X register starts at N and goes
down to zero are faster than those in which it Starts at zero and goes up to N.
This is because the sequence DEX-BNE is faster than the sequence INX-CPX-
BNE. There is a technique, which we call negative indexing, that speeds up
loops in which the index must, for some reason, start at zéro and go up to n. It
works only when 7 is a constant.

All quantities in the X and Y registers are always treated as unsigned, for the
purposes of indexing. It is possible to load the signed number —1 into the X
register; but this is the bit pattern 11111111, which is treated as the unsigned
number 255. If you had an array T which went from T(—5) to T(5) (which is
possible in the language PASCAL, for example), and you put —1 in the X
register, then LDA T,X would nor load T(—1); it would try to load T(255)
(which does not exist).

Negative indexing is a way of using negative numbers as indices and then
compensating for the problem mentioned above by the use of still another new
kind of offset. We will illustrate it for n = 6, with an array T having values
from T(1) through T(6).

First let us see what happens if we start at T(6) and go down to T(1). The suc-
cessive values of the X register are 6, 5, 4, 3, 2, and 1. Using negative index-
ing, the successive values of the X register appear to be —6, —5, —4, =3, =2,
and —1. Actually, the 6502 treats them as if they were 250, 251, 252, 253, 254,
and 255.

Let us consider the first of these indices, namely 250. When the X register
contains 250, we want it to refer to T(1), which would be loaded into the A
register by LDA T since it is the first byte of the array T. This can also be
accomplished by LDA T—1250,X since the address of T, minus 250, plus 250,
is simply the address of T again.

The second index is 251, and when this is in the X register, we want to refer to
T(2), which is kept in the cell T+!1. Instead of LDA T+!1 we could again use
LDA T —1250,X since the address of T, minus 250, plus 251, is the address of T plus
one. It is not hard to see, in fact, that the single instruction LDA T—1250,X will
always load T(k) into the A register, where the k-th index is contained in the X
register.




300 Negative Indexing

Let us now use this idea in an example. Consider the following program to
search T(1) through T(6) for the first byte T(J) which is equal to B:

' LDX  #!0 ;  START AT FIRST BYTE OF T

LDA B ;  ALWAYS KEEP B IN A-REG.
LOOP CMP T,X ;IS B EQUAL TO T(X— 250)
BEQ FOUND ;  IF SO, WE ARE DONE

INX MOVE TO NEXT BYTE OF T
CPX #!6 AND LOOP BACK UNLESS X
BNE LOOP WAS -5, NOW 6 (FOR T+!5)

Using negative indexing, this can be rewritten as

IDX #!256-!6; START AT FIRST BYTE OF T
IDA B ;  ALWAYS KEEP B IN A-REG.
LOOP CMP T-'250,X ; IS B EQUAL TO T(X-250)
BEQ FOUND -; IF SO, WE ARE DONE

INX - :  MOVE TO NEXT BYTE OF T,
BNE  LOOP ;  LOOP BACK UNLESS X = 0

Note that we have only four instructions in the loop instead of five. This is the
main point of negative indexing—to enable you to take a CPX (or CPY)

- instruction out of a loop, and to use the fact that INX (or INY) sets the zero

status flag so that you can follow it immediately by BNE, just as you would
with DEX (or DEY).

You cannot use negative indexing if the loop count n is a variable, because
you need the address expression T+nr—1256; if n is a variable, this cannot be
used. You should not use negative indexing unless timing is crucial; that is,
unless it really'matters to you that you are saving those two cycles (for the compare
instruction) every time through the loop. Negative indexing is too easy to get
wrong, and must not be used indiscriminately.

Some examples of what can go wrong are as follows. You cannot write LDX
#!—6 at the beginning of the loop if you are using LISA 1.5, which does not
accept this (LISA 2 5 does). If the original loop had INX at the beginning, you
must rewrite it to- put INX at the end, and then you must be careful that your
indices and your initial X value are not off by one. The expression T—!250 in the
CMP instruction of our example may be rewritten as T+!6—1256 to emphasize
the constant 6; but it may not be rewritten as T—1256+16, which LISA, for its
own reasons, interprets as T—(1256+16), which is not the same thing. In gen-
eral, two or more operators should be avoided iti an address expression, unless
all of them (with the possible exception of the last) are plus signs.

EXERCISES

1. Suppose that we wished to delete T(50) from the array T of 200 bytes. In
order to do this, we move T(51) to T(50); then T(52) to T(51); and so on,
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*3.

the last byte being moved from T(200) to T(199). This is done as follows:

LDY #!50
LOOP INY
DA T,Y

STA  T—!1,Y
CPY  #!200
BNE  LOOP

*(a) Rewrite this loop in such a way that the INY comes just before the
CPY. Do not increase the total number of bytes in the loop (Care-
fully walk through the result to make sure that it does the same thing
as the original loop.)

(b) Rewrite the new loop so as to use negative 1ndex1ng Use an LDY
instruction of the form LDY #!256—n. (Carefully walk through the
result, as in part (a) above.)

*(¢) How many bytes, and how many cycles, are saved if this is done?
Show your work.

The loop of exercise 1 above cannot be written to go in the reverse direc-
tion through the array (from T(200) down to T(51)), with DEY and BNE
at the end. Why not? (If this is not obvious to you, walk through the first
two or three iterations of the loop.)

Consider a loop which searches an array T for an element E. If E is not equal
to T(k) for any k, 1 < k < N, then the program increments N by ! and sets
T(N) = E, for the new value of N. Could such a program be improved by
using negative indexing? Why or why not?
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Input-output on tapes is not totally reliable. Every so often, a bit will be
transmitted as zero when it should be one (this is called dropping a bif) or as
one when it should be zero (this is called adding a bit).

We will now discuss the use on the 6502 of an old trick which allows for
errors of this kind, as long as they are not too frequent, to be automatically

 corrected. This trick has been around for over twenty years; it is called vertical and

horizontal parity checking.

Tt is assumed that we are writing onto a tape a collection of n bytes, called a
block. If more than n bytes are to be written, they are written.as several blocks,
-each of 1 bytes in length. The scheme will now correct all bit dropping and bit
adding, as lonig as no more than one such error occurs in each block.

The number » is variable, and may be adjusted according to the reliability of
the tape. For example, 1000 bytes might be written as ten blocks of 100 bytes
each (n = 100). However, if this leads too often to more than one error in a
block, we can try writing those same 1000 bytes as 100 blocks of ten bytes each
(n = 10).

Think of the bytes in the block as being arranged along the tape as in Fig-
ure 33. Wg now calculate an extra row of bits and an extra column of bits, as
shown in the figure. These are written on tape along with the given block.
When we read the tape back in, then checking this extra row and extra column
will allow us to correct errors.

Vs
) ) Horizontal
Vertical parity bits parity bits
0O000QGO0OO0C0QCO0DOCDO0OO0O00O000O000D00Q0O00O00O0CO0O0O0O0O0CO0GOO
000000000000 000000D000DO000O0000O00O6000CO0O0OCO0 Inter-
— o000 ©D0000000000000000000000O00O00O0D0O0D0D0OCGCO «
Data ©60000000600000000600056000006000006060000606a « record
bif5_>°°° aoo,ooououooouougoooooe’oououoooooouu- gap
—» 000000000000 0000000000000000O0O000O0O0COD0OCO «
o0 0000000000
000 00000000000

©@0060000000000000OC =
0D000D000000000000O00Q +

Figure 33. Arrangement of Bits on a Tape.
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The bits in the extra row are the vertical parity bits. Each one is so chosen
that the total number of one-bits in its column will be an odd number. The bits
in the extra column are the horizontal parity bits; each one is so chosen that the
total number of one-bits in its row will be odd.

We want these numbers to be odd, rather than even, because we want there to
be at least one one-bit in each row and column. On certain computers, many of
them obsolete (remember that this is an old trick), the one-bits are recorded,
while the zero-bits are not; so a one-bit every so often is required to help syn-
chronize the tape drive.

Mathematically speaking, if a row or column has an odd number of one-bits,
we say that it has odd parity, or that its parity is 1. Otherwise, it has even par-
ity, or its parity is zero. The parity of a row or column may, be found as we did
in section 35, by counting the one-bits; but there is a faster way, which depends
on the fact that taking the exclusive OR of a collection of bits will always yield
its parity (zero or one). This is because zero-bits do not affect the exclusive OR,
while each one-bit changes the exclusive OR from zero to one or from one to
zero, exactly as the successive integers, 1, 2, 3, and so on, alternate between
being even and odd.

For the byte of horizontal parity bits, we take the exclusive OR of all the
bytes to be sent; then, because we want the total number of one-bits in a row to
be odd, rather than even, we take one more exclusive OR, namely with all one-
bits ($FF). The result is the parity of the block of bytes that are sent. For each
vertical parity bit, we take the exclusive OR of all the bits in one byte (which
might be the byte of horizontal parity bits), together with an extra one-bit, for
the same reason as above.

Suppose now that one of the bits in this block is either dropped or added.
Suppose this bit is in row x and column y. Then when we read the tape in again,
row x will have its parity wrong; the parity of this row will be zero, rather than
one. Similarly, column y will have its parity wrong. All the other rows and
columns will have correct parity.

This shows us how parity checking may be used to correct errors. When we
read the tape in, we check the parities of all the rows and columns. If they are
all correct, we assume that there has been no error. If one row and one column
have the wrong parity (say row x and column y) then we look at the bit which is
in row x and column y, and change it (to zero if it is one, or to one if it is zero).

It is important to note that the one bit which is wrong might be one of the par-
ity bits. However, this does not matter, because the vertical parity bits them-
selves form a row, and this can be row x, as above; while the horizontal parity
bits form a column, and this can be column y.

If there are two errors in a block, then more than one row, or more than one
column, or both, will have wrong parity. In this case we cannot correct the
error, but we can at least detect the fact that there has been an error. For this
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reason, the above scheme has been called a single error correction, doubje
error detection scheme.

b

EXERCISES

1. The following program calculates the parity of the byte in the A register,
and puts it in the rightmost bit of A:

STA B

LDX #17
LOOP LSR

EOR B

DEX

BNE © LOOP

“*(a) How many bytes-(including the data byte B), and how many cycles,
does this program take? Show your work.

*(b) In which bit of which register does this program keep the partial result
(the exclusive OR of the first few bits)? Explain. (Hint: Walk through
the routine, with %abcdefgh in the A register, where each of a through
h is either 0 or 1. Keep track of the contents of each bit of the A regis-
ter during the walkthrough, using the hyphen to denote the exclusive
OR,; thus a-b-c denotes the exclusive OR of g, b, and ¢.)

2. The following programv also puts the parity of the byte in A into the right-
most bit of A:
p

STA

LSR

LOOP EOR

LSR

BNE

Cwoww

0O0P

(a) How nfany cycles (maximum and minimum), and how many bytes
(including the data byte B), does this program take? Show your work.
(b) Answer exercise 1 above, part (b), for this program.

3. Suppose that the parity of a block, written to tape, is the 8-bit word BW.
Suppose that the parity of this same block, read back from tape, is the 8-bit
word BR. What is the easiest way to determine which bit in BR is wrong, if
BR #BW?"
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PROBLEM 5 FOR COMPUTER SOLUTION
FORMATTING A PARAGRAPH

Write a program which accepts, as input, a paragraph containing a total of no
more than 256 characters; puts these characters into an array; and then outputs
the array with a maximum of 27 characters per line, without splitting up a word
(unless it is hyphenated). Thus if the inputis

FROM NORTH AMERICA, IT'S EASY TO WING YOUR WAY SOUTH
TO THE CARIBBEAN. TRAVEL AGENTS WHO KEEP
UP-TO-THE-MINUTE SCHEDULES CAN INFORM YOU ABOUT
SPECIAL STOPOVER PRIVILEGES. '

then the output will be

FROM NORTH AMERICA, IT'S
EASY TO WING YOUR WAY SOUTH
TO THE CARIBBEAN. TRAVEL
AGENTS WHO KEEP UP-TO-THE-
MINUTE SCHEDULES CAN INFORM
YOU ABOUT SPECIAL STOPOVER
PRIVILEGES.

Note that the first line is 24 characters long, and you can’t put the first two
letters of EASY on this line, because that would split up the word EASY; the
next line is exactly 27 characters long; and so on.’ The hyphenated word UP-
TO-THE-MINUTE could be split after any of the hyphens.

For extra credit, you may use long-array techniques to extend this program to
handle paragraphs of over 256 characters.

Your program should use GETLNZ rather than RDKEY, for the usual rea-
sons (that is, GETLNZ allows you to correct mistakes on a single line as you

type).




91. THE APPLE DISK OPERATING
SYSTEM

We have seen, in chapter 51, how to use the APPLE DOS (Disk Operating Sys-
tem) commands BSAVE and BLOAD. There are several other DOS commands,
however, that can be used both in BASIC programs and in LISA programs. For
example, DELETE fremoves f from the disk; it is useful if you are about to run out
of space on a diskette.

It may be that you have studied some of the DOS commands as part of a
course in APPLE BASIC. We will assume, however, that you. have not, and
give an introduction to a very few of the most commonly used DOS commands.
Further DOS commands may be studied in the APPLE DOS manual.

A disk operating system works with files on disk. A file consists of data

~ which is put on the disk and then brotight back into main memory, or loaded, at

some later time. A file has a name, as we have seen, and every file on the disk
must normally have a name different from that of every other file on the disk.

The commands BSAVE and BLOAD work with binary files. A binary file
can also be saved and loaded directly from a LISA program. This is done by
writing the same commands from assembly language that we did from LISA
and from BASIC. If the command is DBSAVE LDATA,A$8C00,L$200 as in sec-
tion 51 (to save 512—or hexadecimal 200—bytes starting at address 8C00 on a
file called LDATA), one writes

LDX #$FF ;  START CHARACTER INDEX AT —1
LOGP INX ;  INCREASE CHARACTER INDEX
LDA BSMSG, X ;  GET NEXT CHARACTER OF MSG
CMP #CRET ;IS IT A CARRIAGE RETURN
BEQ DONE ; IF SO, WE ARE FINISHED
JSR  COUT ;  IF NOT, OUTPUT IT
JMP  LOOP ;  AND GET THE NEXT ONE
DONE JSR  COUT ;  OUTPUT THE CARRIAGE RETURN

with CRET EQU $8D and COUT EQU $FDED as usual, and with

BSMSG  BYT $84 ; CONTROL-D

ASC "BSAVE LDATA, A$8C00, L.$200"
BYT CRET ; CARRIAGE RETURN
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(note that what follows the A mus? be a number, either in decimal or hexadecimal).
The point here is that whenever a control-D is output as the first character of a line,
the remaining characters, up to the carriage return, are treated by the APPLE as a
DOS command. In general, a string of characters terminated by a carriage return is
called a record. GETLNZ, for example, reads one record.

Besides binary files, APPLE DOS handles fext files, which are composed of
records as described above. A binary file, as we have seen, is saved and loaded
all at once; a text file, however, is written and read one character at a time.
This is done through the same monitor subroutines that we use to read charac-
ters from the keyboard, or display them on the screen. We have to tell the APPLE
system, however, what file we are working with before we do this.

Before we work with any file, with the name frname, we must open it and
specify whether we are reading or writing. The DOS command OPEN fhame
opens the file; the DOS command READ frame specifies that the file is to be
read; and the DOS command WRITE frame specifies that the file is to be writ-
ten. Opening a file is an initialization operation; it is done once at the beginning
of any program that works with the file.

Note that READ and WRITE do not actually read and write. This is done by
monitor subroutines. For example, RDKEY reads one character; COUT writes
one character; and GETLN reads one line into the input buffer starting at cell
0200. We have used GETLNZ, which outputs a carriage return before calling
GETLN. On the screen, this is useful, because the new line will be displayed
starting at the left-hand end of the screen; but for disk input it is unnecessary,
and GETLN is used instead.

If you are working with more than one file, then start your program with
the DOS command MAXFILES n where you are working with a total of n (< 9)
files.* Then open each file separately, as before. The commands READ and
WRITE (without OPEN) will now switch the reading and writing back and forth
among the files. If you have been reading file o, and you now wish to read file
B, give the READ B command; and similarly for writing.

Whether you are working with one file, or more than one, you must close all
your files with the DOS command CLOSE at the end of your program. CLOSE
frname closes the file whose name is fname. All the DOS commands given above
are given from a LISA program in the same way as the BSAVE command was
given near the start of this section.

When you are using RDKEY and COUT for disk operations, you can simul-
taneously use KEYIN for keyboard input, and COUT1 for screen output.
KEYIN and COUT! work just like RDKEY and COUT, except that they do not
read or write to disk. The defining EQU statements for them are:

*Do not issue this command, however, while in LISA.
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KEYIN EQU $FD1B
COouT1 EQU $FDFO

+

EXERCISES

*1.  Modify the program of this section so that it becomes a general DOS com-
mand execution subroutine DOSCOM, called by loading the .address of
the given DOS command string into the A and X registers (upper half in

- A, lower half in X) and then calling DOSCOM. Thus, for example,

LDA /BSMSG
LDX #BSMSG
JSR  DOSCOM -

should perform the DOS command BSAVE LDATA,A$8C00,L$200
(where BSMSG is as given in the text). Use post-indexed indirect address-
ing, with the two zero-page locations ZP and ZP+!1; do not save and
" restore any registers. Assume that CRET and COUT are defined as usual.

! *2. Do exercise- | above, but using address modification instead of post-
indexed indirect addressing. Do not use the Y register. Use MODIFY.

3. (a) What does the following instruction sequence do (the sequence, not
the individual instructions), assuming that DOSCOM is as above,
with CRET, RDKEY, and COUT defined as usual, and assuming that
CTRLE (control-E) signifies the end of a file?

|

I

i LDA  /OPEN1
ILDX  #OPENI

‘ JSR  DOSCOM

‘ LDA  /READ1

! IDX  #READ1

X A JSR  DOSCOM

LDA  /OPEN2

LDX  #OPEN2

JSR  DOSCOM

IDA  /WRITE2

LDX  #WRITE2

JSR  DOSCOM-

LOOP JSR  RDKEY
CMP #CTRLE
BEQ DONE
JSR  CoUuT
JMP LOOP
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DONE JSR  COUT
LDA  /CLOSE i
LDX  #CLOSE 1
JSR  DOSCOM

OPEN1 BYT $84
ASC  "OPEN F1" |
BYT CRET i
READ1 BYT  $84 b
ASC  "READ F1" I
BYT CRET.
OPEN2 BYT  $84 , i
ASC  "OPEN F2" ‘
BYT CRET |
WRITE2 BYT $84
ASC  "WRITE F2" ‘
BYT CRET
CLOSE BYT $84 |
ASC . "CLOSE" i
BYT CRET

(b) What improvement may be made at the end of the sequence of b
instructions above? (Hint: see the end of section 61.) |
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Besides reading and writing text files with your own user programs, you can
also read them, change them in a number of standard ways, and write them
back to disk, using a special kind of program called an editor.

The most important use of editors is in making changes to programs. The
LISA commands, in fact, such as I and D, that we studied in section 46, are part
of a system known as the LISA editor. Similarly, BASIC commands such as
LIST, RUN, SAVE, and the like, are part of the BASIC editor. These editors
have a limited number of commands, and were originally written to handle one
specific kind of file.

More gereral editors (such as PIE, for example, which runs on the APPLE)
have not only been written for manipulation of arbitrary text files, but also pro-
vide many commands which are not found in the LISA or BASIC editors. For
example, you can search through a text file for all occurrences of a character
string (such as HIM) and replace it with another character string (such as HIM
OR HER). Also, you can take an ex1st1ng part of your file and move it to a dif-
ferent part of your file.

A general text editor is not always better than a special-purpose editor such as
the LISA editor. For example, the LISA editor, since it is always working with
LISA programs, can catch syntax errors in these programs. Also, the LISA edi-
tor is faster than PIE.

The LISA editor does not keep LISA programs in the same format, on disk,
that PIE or other editors do. However, LISA provides a facility whereby a LISA
program can be written out as a fext file (rather than a binary file, as would be
done by the SAVE command) so that these editors can process it. This is done
through the LISA command W (for “write”), used as an alternative to SAVE.
Instead of SAVE TEST?7 (for example) one types W TEST7 to put the current
LISA program out on a text file, with the name TEST7.

In order to read a text file back into LISA, the LISA editor makes use of a
trick, which takes a bit of explaining. As we have seen, the LISA command D
(control-D), followed by an APPLE DOS command, executes that command.
As it happens, there is an APPLE DOS command, EXEC £, which reads a text
file f and treats each line of this file as if it were typed at the keyboard. If you
type EXEC TEST7 as an APPLE DOS command, the lines of the file TEST7
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are treated as further APPLE DOS commands, as they would be at that point in
your work with the APPLE if you typed them in; this accounts for the name
EXEC, or “‘execute a file of commands.”” (This is like the “‘catalogued pro-
cedure”” facility of large IBM computer systems.)

The LISA command DEXEC f, however, will treat each line of the file f as if
it had been typed at the keyboard while in LISA, since the LISA system is now
expecting another LISA command. Now suppose that the first line of f were I
(the LISA insert command), and that the remainder of f were a LISA program.
Then DEXEC f would act like an insert command, followed by lines to be
inserted—in other words (at the beginning of the editing process) it would do
the equivalent of reading in the file f. ' '

The trick mentioned above involves the W command, which writes out a text
file, but with one extra line, INS (a variation of I, the insert command) at the
beginning. The command DEXEC f now reads this file back in. Actually,
DEXEC f is analogous to AP f (“append f7), rather than LOAD f, because, if
you have been working on another LISA program, the insertion process
described above will insert the lines from the text file after that program. To
prevent this, you can type the LISA command NEW (exactly like the BASIC
command NEW) to start over with a new program, before typing DEXEC f. Of
course, this would not be needed at the start of the editing process, which is
when you usually would be loading a file. Also note that, after executing DEXEC,
you must type control-E return, which always terminates a group of inserted lines.

Listings from LISA assemblies can also be made into text files, using another
trick. The LISA pseudo-operation DCM “‘c”’ (for ‘‘disk command ¢’’) causes ¢
to be executed as a DOS command during the final phase of assembly. Note that
this is a pseudo-operation, not a LISA command; you put it in your LISA pro-
gram. Specifically, suppose that you want a listing file called LIST3. The first
two lines of your LISA program should be DCM *‘OPEN LIST3** and DCM
“WRITE LIST3"’ and you should have DCM ‘“CLOSE LIST3"’ just before the
END statement in your LISA program. When the OPEN and WRITE com-
mands are executed, further output, which would normally go to the screen,
goes to the file LIST3, and so that is where the listing will go.

Partial listings can be produced by the pseudo-operation NLS (*'no list’”) in
LISA, which causes the remainder of the LISA program not to be listed (either
to a file or to the screen) until it is ‘‘undone’” by the LISA pseudo-operation
LST (““list’”). A listing file can also be sent to the printer, in which case the
LISA pseudo-operation PAG (‘‘new page’”) can be used to start this printed file
on a new page. Many programmers use PAG at the beginning of every subrou-
tine in a long LISA program.*

*In LISA 2.5, there is TTL (*“‘title’”); TTL ““s”’ cause the string s to appear as a title at the top of
each page of the listing.
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&R EXERCISES

i ! *1.  Why is the command DEXEC f required in order to load a text file? Why
L doesn’t LOAD f work? Explain.

2. Suppose that we gave the pseudo-operations

‘ DCM  "OPEN LIST1”
ST DCM  "WRITE LIST1"

‘ | DCM  "OPEN LIST2"

3 . DCM  "WRITE LIST2"

at the start of a LISA program, in order to produce two copies of the list-
ing, on the files LIST1 and LIST2. This, in fact, would not work. Why
not, and what would actually happen? ~

. *3. "What appears on the Screen when the following program is assembled?
| (Note that LST itself does not appear on the screen, whereas NLS does.)

i
! : '

) DA P1
! s _ STA P2
| ) R NLS
! LDA P3
STA P4
LST
| IDA P5
N STA P6
BRK
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Suppose that you have an APPLE which has replaced an obsolete computer.
After selling or throwing out the obsolete computer, you find yourself with
some good working programs for it, written in-assembly language. IS there any
way you can run these programs on the APPLE? Every. computer has its own
machine language, so you will not be able to run them directly; but you might
be able to run them indirectly, using a special program called a simulator.

A simulator, in general, is a program that allows you to run, on machine X, a
program written for machine Y. In this case, machine X is the 6502. Let us
suppose that machine Y has n different instructions, with operation codes k;,
ks, . . ., k,. Then the simulator is basically a program with n subroutines, one for
each k;.

The simulator starts by loading the given program into the memory of
machine X. It now looks at the operation code of the first instruction of the pro-
gram. Suppose that this is k;; then the simulator calls its jth subroutine, whose
job is to do what this particular operation code specifies.

Suppose that machine Y has a register, called the Q register, which is 32 bits
long. Suppose that the instruction with operation code k; is a “‘store Q™ instruc-
tion. That is, it stores the Q register into some area of memory, which we shall
call C, and C is also 32 bits long. Then, in the simulator, there will be set aside
four special bytes of the memory of the 6502, to represent the Q register, and
four bytes for each 32-bit word like C. The jth subroutine, as called above, will
then move the four bytes of Q to the four bytes of C, one byte at a time.

Other subroutines of the simulator will perform similar functions. The
machine Y will probably have many registers, like any machine does. Each of
these will correspond to a simulated register such as the four bytes of Q as
above. The main memory of machine Y will correspond to simulated main
memory, and for each address o in machine Y there is a corresponding simu-
lated main memory cell whose address, in the 6502, may be computed from o
(although it is not necessarily equal to o).

The last thing that the jth subroutine does is to move the simulator on to the
next instruction. This is because the simulator is going to simulate, or execute
in simulated mode, one instruction after the next in the program written for
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machine Y, in the order in which machine Y would have executed these instruc-
tions. To do this, the jth subroutine modifies the simulated program counter.,
which is another collection of bytes like the other simulated registers.

In our example involving the “‘store Q”” instruction, if the simulated program
counter contains [3, then the jth subroutine will add 1 to B (or sometimes some
other small integer &, if ‘‘store Q’’ is a k-word or k-byte instruction). If instead
of “*store Q*” we had “‘jump to L,”’ then the corresponding subroutine would
put the address of L in the simulated program counter. Conditional branching
can also be simulated, by a combination of the above two techniques. After the
Jjth subroutine is finished, then the main program of the simulator will use the
simulated program counter to find the operation code of the next instruction.

Index register operations can also be simulated. The question here is which
cell of the simulated main memory to make reference to. The address of this
cell is normally part of the instruction indicated by the simulated program
counter; but, if there is inde_xing in an instruction, we add to it the contents of
the simulated index register. This is all done by the main program of the simu-
lator, so that the » subroutines can use this information. .

Simulation, as you might expect, is very slow. Typically, a program is
slowed down by a factor of about 100 when it is simulated. Hence simulation
should not be used unless it is absolutely necessary.

Simulation may be used, not only for obsolete computers, but for new com-
puters that do not have much software yet, or before they are actually available.
In this case, machine Y is the new computer, and machine X is the existing
computer on which a simulator is written. In this case there is also often written
an assembler, running on machine X, which produces programs for machine Y.
This is called;a cross-assembler, in contrast to an ordinary assembler which pro-
duces programs for the same machine on which it runs.

Simulation may also be used with a machine language which does not
correspond to any existing computer language. An example is SWEET16, a
machine language for a 16-bit machine that was never built. There is, however,
a widely used simulator for SWEET16 that runs on the 6502 (and specifically
onthe APPLE). ./

Some computers simulate other computers all the time. Many models of the
IBM 370, for example, consist of computers which are actually far simpler than
the IBM 370, but which simulate it, using a simulator built into the hardware.
This is called microprogramming (and is not to be confused with microcomput-
ing, that is, the use of a microprocessor such as the 6502). A microprogrammed
computer often simulates other computers, using other simulators (called enu-
lators in this case); which are likewise built into the hardware.
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EXERCISES

*1.

Suppose that the UNIVAC 1110, a large computer, is being simulated on
the 6502. Each address on the 6502 is the address of an 8-bit quantity,
called a byte, and, in much the same way, each address on the 1110 is the
address of a 36-bit quantity, called a word (not to be confused with an
English word). Each simulated 36-bit word is expressed in five bytes on
the 6502 (since 5 X 8 = 40 bits are sufficient to contain it). An area & of
5x bytes is used in the 6502 in order to simulate a UNIVAC 1110 memory
area of x bytes which starts at the 16-bit address  on the 1110. To simu-
late the 1110 instruction L A5,N (*‘load A5 with N'*), the five bytes with
addresses p through p+4, representing the contents of the cell with
address N, must be moved to the five bytes of the simulated register AS.
Give a formula for p in terms of N, «, and [3.

In the situation above, suppose that the simulated instruction is L A3, T,Al
(“load A5 with T(k), where k is in the ind;:x'register A1”). Give a formula for
p in terms of N, o, 8, and k.

*(a) The UNIVAC 1110, as described in exercise 1 above, has one instruction
per 36-bit word. Suppose that the instruction having address y is
simulated in the cells having addresses g through g+ 4, and the simu-
lated program counter contains g. In what way should the simulator
modify this program counter after simulating L A5,N as above?

(b) Answer the same question as above if the simulated program counter
contains y, rather than g. (Note that the simulated program counter
can contain either the actual 1110 address or the corresponding
address in the 6502; this is a design decision to be made in designing
the simulator.)
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‘ An interpreter is like a simulator, except that, instead of running programs writ-
CL ten in machine language for some machine Y, it runs programs written in some
‘ other language L. This might be BASIC, FORTRAN, PASCAL, or the like,
The operation of an interpreter is in many ways like that of a simulator.
There is, in particular, something like a simulated program counter; but instead
of indicating the address of a machine language instruction, this counter indi-
cates the address at which the current statement in the language L is kept in
x memory. ’
P Suppose now that there are n statement types in the language L. (In BASIC,
o ~ these might be IF, GO TO, FOR, and the like.) There are now n subroutines of
| i the interpreter, one for each statement type, just as there were n subroutines of a
I simulator, one for each of n different instructions in machine language.
: ~ Aninterpreter keeps a list of all variables in the program being interpreted. This
. list is used by the  subroutines as described above. For example, suppose that the
! 1 " current statement is J =K +3. This is an assignment statement; so the subroutine
i which handles assignment statements would be called. This subroutine would add
! 3 to the quantity in K (in the list of variables) and store the result in J (in this same
Lo list). Note that,the interpreter is itself a program, and might have its own variables
I called J and K; but these have nothing to do with the J and K in the program being
g interpreted.
| An interpreter also keeps a list of labels and their corresponding addresses. If
1 the program being interpreted has a statement GO TO 100, and the statement with
N ; label 100 is now in the computer at address ., then the label 100 will be kept in the
P label list, associated with the address a. When GO TO 100 is interpreted, the
i\ = subroutine which processes GO TO statements will look up 100 in the list and will
‘ determine from this that « is to be placed in the simulated program counter.
Separate from the list of labels is the list of keywords (in BASIC, these are IF,
P READ, DATA, DIM, and the like—in general, any words that have special
il | f meanings in the language). In some languages, keywords are reserved—that is, it
it is not allowed to use a keyword as an identifier.
0 We are now, finally, in a position to answer a very important question which
[ was left unanswered in your study of BASIC. All microcomputers process
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BASIC, and you can pretend that they are ‘‘BASIC machines’” in the sense that
they “know” BASIC directly. In fact, however, they don’t. The only language
that a computer “‘knows’ directly is its own machine language. Whenever you
are working with a microcomputer in BASIC, almost all the time you are actu-
ally working with an interpreter, as described above. (You might also be work-
ing with a compiler, which will be described in the next section.)

Interpreters differ according to how they keep, in memory, the programs they
interpret, or the source programs. A pure interpreter keeps the source prdgram
in memory exactly as it appears externally. Thus if J=K+3 appears in the
source program, the character string ‘‘J=K+3’’ appears in memory. A semi-
interpreter translates the source program into an infermediate language, and the
program is interpreted in this form. An intermediate “language is to an inter-
preter what a language like SWEETI6 is to a simulator—there are no machines
which process it directly, but it is still quite easy for the interpreter to process it
indirectly.

It is common, in an intermediate language, to replace variable names by their
indices in a table. A pure interpreter cannot interpret J=K+3 without first look-
ing up J and K in its tables, which is a time-consuming process. However, if J is

the fifth variable in the program, and K is the sixth variable, then J and K would -

be replaced by 5 and 6, respectively, in the intermediate language. This makes
it much easier for the semi-interpreter to interpret this statement, because there
is no table lookup to do. (The constant 3 would also be replaced by some index
in a table.)

Another characteristic of semi-interpreters is that all the keywords in the
source program are translated into indices in the list of keywords; these
indices are often called fokens. This again makes the semi-interpreter’s job
easier; a pure interpreter has to look up every keyword, every time it interprets a
statement. This is particularly wasteful when the statement is in a loop, so that
it will be done many times and therefore interpreted many times.

Interpreters, like simulators, are slow. On microcomputers, however, this
often does not matter; as we have mentioned earlier, computer time on a micro-
computer is usually so cheap as to be almost free.

EXERCISES

1. Suppose that GO TO is the only keyword in a given language which
begins with the letter G. Can a pure interpreter for that language deter-
mine whether a given statement, being interpreted, is a GO TO statement
by looking only at its first character? Explain.
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i *2.  Suppose that a statement in some language starts with the characters
no “A=B*C"" (followed possibly by some other characters). Suppose that A,
[ B, and C are all known to be simple (unsubscripted) variables. Should a
I pure’interpreter for this language look up the values of B and C in its
tables, and multiply them, as soon as it has looked at the first five charac-
ters of this statement, as above? Explain.

3. In a semi-interpreter, when J=K+3 is interpreted, no table lookup takes
B place, as we noted in the text; but, when J=K+3 is translated from the
AR source language to the intermediate language, J and K must be looked up
i " in a table of variables. It might seem that this process compares unfavor-
| ably with that of a pure interpreter, since both kinds of interpreter perform
S table lookup at some point, while with the semi-interpreter there is the
extra time for translation into the intermediate language. However, this is
not necessarily the case. Explain why not.
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By now you might well be wondering how a program like LISA is written.

An assembler processes a program P written in assembly language into a pro-
gram Q in machine language. You can think of the assembler as reading the
input P and producing the output Q. Most assemblers actually write out Q,
although LISA leaves Q in memory to be executed; it can be written out, using
the SAVE feature of LISA, if you want it to be. The program P is called the
source program;, the program Q is called the object program.

The main job of an assembler is in translating each assembly language state-
ment into its machine language counterpart. There are two parts to this job. The
first has to do with the operation codes and is quite easy. There is a table, in the
assembler, of all mnemonics and their corresponding operation codes. When
TYA occurs in the program P, the assembler looks up TYA in the table, gets the
corresponding operation code (98, in hexadecimal) and puts it in the program Q.

Sometimes, on the 6502, there is more than one operation code for a given
mnemonic. In that case the assembler must look at the rest of the given assem-
bly language statement. Thus if the statement is STA T — 12,Y then LISA looks
at the comma and the Y, notes that there are no parentheses around T—!2 (if
there were, then the operation code would be 91), and calculates the operation
code as 99.

The second part of the job, as above, is calculating the addresses. For exam-
ple, STA T—12,Y has the address 08BE (or, with bytes reversed, BE 08) if
08CO is the address of T. This part is a bit harder than the first part, because we
might not know the address of T yet. For example, T DFS !100 might come
later on in the source program P, so we have not read it yet.

In order to take care of this part of the job, most assemblers are written in at
least two parts, or passes. In the first pass, the assembler reads P as input, but
does not produce Q yet. Instead, it constructs a symbol table in memory. This is
a table of all identifiers (such as T) together with their corresponding addresses.
In the final pass, the assembler reads P again as input, and this time it produces
Q, with help from the information in the symbol table.

An assembler has a simulated program counter, much like a simulator does,
but it is used in a different way. When the assembler reads an ORG z statement,
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| instruction or a data declaration, which would take up k bytes in Q, it adds  to
L C. Every time it comes to a labeled instruction, or a labeled data declaration, it
puts the given label in the symbol table (in the first pass), together with zhe
current value of C, which is then the address associated with that label.

Besides calculating operation codes and addresses, the assembler must do
various miscellaneous jobs in connection with assembly language instructions.
i On the 6502, this includes calculating relative addresses for conditional branch
| instructions. It also includes calculating immediate data in hexadecimal form;
i for example, if LDA #1100 is contained in P, then the 100 must be converted to
h o its hexadecimal form, or 64, before being inserted in Q.
o
i

[
i - the simulated program counter C is set to z. Every time the assembler reads an

| Assemblers must also process the pseudo-operations in the source program P,
i Here the operation of an assembler is vaguely like that of a simulator. If there
: ‘ are n different pseudo-operations, then the assembler has n subroutines, one for

‘ each pseudo-operation. We have already seen that the subroutine which proc-
esses ORG £ statements loads the simulated program counter with k.

A compiler is like an assembler, except that where an assembler has assembly
language source programs, a BASIC compiler (for example) has BASIC source
programs. In both cases, the object programs are in machine language. A com-
piler, however, is most often compared to an interpreter, because, although
they are very different kinds of programs, compilers and interpreters are two
‘ ways of doing the same thing—namely, running a program written in some lan-
i - guage such as BASIC.

b Compilers are very long and complex programs, and they take quite a bit of
P time to run—sometimes longer than an interpreted program would take. In such
' } a case it is clearly better to interpret than to compile. Also, many microcom-
‘ puter systems afe too small to support a compiler; there is no way to fit the com-
} | piler into the available memory space. On the other hand, an object program
“ always runs much faster, after being compiled, than the corresponding source

L program would if it were interpreted. If a program is going to run for a long
time, therefore, it is better to use a compiler, if you have one, than to use an
interpreter. y

One language that is almost always compiled, rather than interpreted, is
FORTRAN. Before microcomputers were developed, FORTRAN, rather than
BASIC, was the most common algebraic language, and it is still used more than
BASIC on large computers such as the IBM 4300 series.

A disassembler is a program which converts a machine language program
! into its assembly language counterpart. These are useful if you are analyzing
someone else’s object program, although they can never be entirely satisfac-
o tory, for a number of reasons. (For one thing, they must choose variable names
| arbitrarily.)
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3§ EXERCISES

#1. Consider the table of mnemonics in an assembler. Is there any reason for
this to be a sorted array? Explain.

2. Consider the symbol table in an assembler. Is there any reason for this to
be a sorted array? Why is this situation different from that of the preced-
ing exercise? Explain. (Hint: see section 86.)

#3.  Suppose you had a program which translated a BASIC program into its
assembly language counterpart. Could this be used in a method of execut-
ing a BASIC program, as an alternative’ to the use of an interpreter?
Explain. :




|
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How can we learn to write programs more efficiently? This general question has
occupied the minds of computer scientists for a considerable amount of time. Tt
includes both writing more efficient programs and making the program-writing
process more efficient. Sometimes these goals conflict; as we saw in section 37,
(. programmer time trades off with memory space and program time, and a pro-
3 gram that is itself very efficient may take am unacceptably long time to write.
One way to write programs more efficiently is to be more organized. We are
all familiar with *‘organized” and ‘‘disorganized”” people; and often a person is
organized in one area and disorganized in another. The reason that many people
are not ag efficient as they could be, when they are programming, is that they
set about the task in too disorganized a way. There has been a considerable
amount of. work done on how to organize, or structure, the programming proc-
| " ess better, and there have been many, sometimes conflicting, notions of what
structured (or “organized”) programming ought to be like.
.' One point that was noticed very early in the study of structured programming
4o is that too many programmers use only the simple statements of any given pro-
S gramming language. They use assignments, IF statements in their simplest form
Pl (IF condition THEN GO TO label) and input-output, and don’t use subroutines,
l ‘ ;‘ ; iteration (surch as the FOR statement in BASIC) and the more general forms of
T IF statement that are available in some languages (such as IF condition THEN
i } L statement-1 ELSE statement-2). All these more complex statements can be
‘ * simulated, or ‘‘faked up,”” in terms of simpler statements, but the result is usu-
. ‘ ally a program that is much more difficult to understand than it should be.
| The Dutch computer scientist E. W. Dijkstra put it this way: ‘‘For a number
L of years I have been familiar with the observation that the quality of program-
mers is a decreasing function of the density of GO TO statements in the pro-
grams they produce.”’* The reason for this is that the more complex statements
; of a language, which are more often used by better programmers, can always be
- simulated in terms of constructions involving GO TO statements, as shown in

*E. W. Dijkstra, ““Go-To Statement Considered Harmful,”” Communications of the ACM 11, 3
(March 1968), pp. 147—148. )
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Figure 34. It follows immediately that poorer programmers will always use
more GO TO statements in their programs.

The four structured programming statements of Figure 34 have found their
way into many programming languages, in one form or another (Figure 34
shows their PASCAL form). T In assembly language, of course, we do not have
these statements; but we can always write a program in a higher-level language
first, using structured programming, if that makes it easier for us to understand
it, and then hand-translate the resulting program into assembly language. '

Dijkstra goes on to say: ‘I became convinced that the GO TO statement should
be abolished from all ‘higher level’ programming languages (i.e. everything
except, perhaps, plain machine code).”” Upon Dijkstra’s advice, thi$ was tried,
by a number of people, and the consensus today is that it.doesn’t work; there are
some GO TO statements (most of them dealing with error conditions) that are
easier to understand than the corresponding *‘structured’” forms of them.

Another method of organizing yourself to program better is top-down design.
This is similar to the process of writing an outline for a term paper. You lay out,
on one sheet of paper, all the things you want your program to do, and then

STRUCTURED CORRESPONDING SEQUENCE
PROGRAMMING INFORMAL OF ASSIGNMENTS AND
STATEMENT MEANING CONDITIONAL BRANCHES
IFC If the condition C is true, IF C THEN GO TO m;
THEN S1 then do the statement S1; . ’ S2; GOTOn;
ELSE S2 otherwise do the statement S2 m: S1; n:
WHILE C As long as the condition C GOTON;, m: S;
DOS remains true, keep repeating n: IF C THEN GO TO m;
the statement S (zero or more times)
REPEAT SEQ Repeat the sequence of statements m: SEQ;
UNTILC SEQ (one or more times) until IF NOT C THEN GO TO m;
the condition C becomes true
CASEK OF Do the statement S; IFK <> 1THEN GO TO np; S1; GOTOn;
1: S1; (only) if the ny: IFK <> 2 THEN GO TO n3; S2; GOTOn;
2: 82; value of K is n3: IFK <> 3 THENGO TOny; S3; GOTOx;
3: 83; i, where i is FAT o e e
. any of 1, 2, fy: IF K <>m THEN GO TO error; Sm,
m; Sm e, n:

Figure 34. Structured Programming Statements.

tIn PASCAL, a label is followed by a colon, and a statement (usually) by a semicolon; thus m: S;
denotes the statement S, having the label m.
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| .. expand each of these into a subroutine or section of code. If you want to, you can
o write your main program to look exactly like an outline; it is nothing more than g
|- sequence of,subroutine call statements, one for each line of the outline, with
! : perhaps a very few iteration and error-checking statements thrown in. Many pro-
’ ! grammers find it much easier to understand their own programs if they write them
| in this way.
i Still another device used in organizing yourself to be a more efficient program-
. mer is the walkthrough, as we described it in section 44. Walkthroughs are even
more cffective when they are done in a group, with all the programmers in the
group ready to discover bugs in the program that is being walked through.
Finally, there is an organizational device: the designation of the best pro-
grammer in any given programming group as the chief programmer. This
sounds much easier than it is in practice, because very often the best program-
; mer is not a natural leader, whereas other programmers in the same group may
A be natural leaders. It is a continuing, and important, organizational task to
P insure that the programmers in a group respect the authority of the chief pro-
| ! grammer on a continuing basis and do not try to manipulate the design of the
‘ program against the wishes of the chief programmer.
|
|
1

EXERCISES

! 1. In each of the following cases, derive the corresponding sequence of
T assignments and conditional branches, as in the right-hand column of Fig-
i ure 34:

*(a) IF CyTHEN REPEAT Q1 UNTILDELSE S

1 ‘ (b) WHILE C1 DO IF C2 THEN S1 ELSE $2

. . . .
i 2. In each of the following cases, derive a corresponding structured program
| as in the preceding exercise, without using any GO TO statements:*

o

1 *(a) , IF C1 THEN GO TO m2;
1 - GO TO n; ‘
‘ m: S2;
n: IF C2 THEN GO TO m;
. GO TO n2;
AT m2: Si1;
' ! n2:

*Note an important difference between PASCAL and many other languages with respect to labels. In
! ‘ Part (a), m.: is a label, and IF is not; yet IF starts in column 1. This would not be permissible in assembly
} o language, but is so in PASCAL. The PASCAL system can tell that IF is not a label; among many other
things, it is not followed by a colon.




Structured Programming

(b)

m: IF Cl1 THEN GO TO m2;
S2;,

GO TO n;

m2: 81;

n: IF NOT C2 THEN GO TO m;

3. In each of the following cases, give a sequence of instructions on the 6502
which corresponds to the specified stuctured programming statement: '

*(a) IF C1 THEN S1 ELSE WHILE C2 DO S2
(b) REPEAT IF C1 THEN S1 ELSE S2 UNTIL C2




| 97. BINARY AND HEXADECIMAL
- FRACTIONS

] So far, all the numbers which we have learned how to process in the 6502 have
i been integers. How do we represent fractions in the binary or hexadecimal sys-
tem? One way is-by using an extension of what are informally called ‘‘deci-
mals,”’ or decimal fractions.

How do we calculate the value of a decimal like .738? It is certainly
738/1000, but why 1000 rather than 100 or 10000? Because there are three dig-
its in 738, and 10 to the third power is 1000. We can use this same idea in the
binary systém. Thus .101 represents 5 (that is, 101 in binary) divided by 8
i (which is 2 to- the ‘third power, since there are three digits in 101); in other
i‘ s ~ words, ¥%. We refer to .101 as a binary fraction (by analogy with decimal frac-
|"‘, \ tions); the first 16 binary fractions, together with zero, are shown in Figure 35.
l

. The period in .101 is known as the binary point (by analogy with ‘‘decimal
| ‘ " point’).
We are familiar with the idea that certain decimal fractions ferminate,

\ whereas others do not. Thus % is 0.75, because % = 75/100; but % is the
unending (or mon-terminating) decimal fraction 0.333333 . . . . (and so on indef-

initely). The same thing happens with binary fractions; in fact, the binary frac-

; tion 0.01010101 . . . . (and so on indefinitely) represents .
| 11 g Given an unending decimal like .736736736 . . . . (and so on indefinitely), we

‘ ‘ can convert it to a fraction by dividing the repeating part (736 in this case) by
-107—1, where d is the number of digits in the repeating part. In this case we obtain
736/999 (remembér that .736 by itself would be 736/1000). A similar rule holds
j with binary fractions; thus .01 is ¥4 (that is, 1 over the second power of 2, since
1 there are two digits in .01) and therefore .01010101 . . . . (and so on indefinitely)
e is ¥, since 3 = 2% — 1.

(Why don’t we represent /5 in the computer as the two integers 1 and 3, and
then add, subtract, multiply, and divide fractions according to the rules we
learned in elementary school? Because we would have to keep reducing our
{ answers to Jowest terms, which turns out to be very time-consuming. Besides,
- many of the numbers we wish to work with, such as «, do not correspond
exactly to any fraction.)
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Some of the fractions which terminate in the decimal system do not terminate
in the binary system. For example, 3/16 is .0011 in binary, and, by the above
rule, 3/(16—1), or 3/15, is .001100110011 . ... (and so on indefinitely); but
3/15 reduces to ¥%, which, in the decimal system, corresponds to the terminat-
ing decimal 0.2 (since 5 = %ho).

In addition to decimal fractions like 0.75, there are more general numbers,
like 3.25, in the decimal system, which have both an integer part and a frac-
tional part. The same is true in the binary system; for example, 11.01 is the
binary representation of 3.25.

Suppose now that we want to express 11.01 as a 16-bit quantity in the com-
puter. We can decide, if we want to, that the first 10 of our 16 bits are for the
integer; then comes the binary point, as noted above; and finally come 6 bits for
the fraction. Thus 11.01 would be represented as 0000000011.010000 in this
way.

In any such representation, there is always a question as to where to put the
binary point. In the representation above, since we put the binary point after the
first 10 bits, we can represent numbers from O (that is, 0000000000.000000)
through 10236%. (that is, 111111111.111111). If this is too large a range, we
can put the binary point somewhere else, say after the first seven bits. This
would give us a range from O through (almost) 128, and it would give us more
fractions between every pair of consecutive integers.

The answer to our question seems to be that we can put the binary point any-
where we want to, but, once we put it somewhere, it is fixed at that position for
the purposes of addition and subtraction. That is, we can make calculations like

0110010000.110010 0100111011.011100 .
+0011010110.100111 —0001001101.101100 h
1001100111.011001 0011101101.110000

by adding or subtracting our 16-bit quantities as integers. This, however, is
only because the binary points ‘‘line up’’; if they did not, we would have to
shift one number or the other until they did line up. For this reason, the above
representation is called a fixed-point representation.

Negative numbers may be represented in a fixed-point representation by
taking the twos’ complement in the usual way. If this is done, the range of
numbers in the first representation above becomes from — 512 (that is,
1000000000.000000) through 5116%. (that is, O111111111.111111).

There are also hexadecimal fractions, containing hexadecimal digits (thus .8
is ¥, .C is %, and so on, as in Figure 35). These can be converted to binary
fractions by expressing each hexadecimal digit as four binary digits, just as we
did with hexadecimal integers in section 4. Conversion from binary to hexadeci-
mal fractions also works the same way as it does with integers.
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h
§ 0 0 0
l ~ .0001 Y16 1
} S .001 lg 2
|- 0011 e 3
. 01 Ya 4
i .0101 6 5
; 011 R 6
‘;; ‘ 0111 e Vi
. .1 p 8
W : .1001 %6 9
- .101 % A
o 1011 g B
i A1 Y .C
A - 1101 Y6 D
‘ 1 R E
1111 T e F
1.0 1 1.0

BINARY DECIMAL  HEXADECIMAL

" Figure 35. Binary and Hexadecimal Fractions.
| - - EXERCISES

v 1. What fraction a/b (for decimal integers a and b) corresponds to each of the
v following unending binary fractions? (Give the fraction in lowest terms, in
' each case.)

(2) .101010.. . . ..
*(b) .10011001 . . . . .
() .100100 . . . ..

| 2. Give the closest approximation to each of the following fractions as an
| unsigned fixed-point number of the form bb.bbbbbb (that is, in 8 bits with
the binaty point between bits 6 and 5, counting from the right as bit zero):

: *(a) Y%
0o (b) 29
*(c)

3. Decimal fractions of the form /10" are terminating; but there are certain
decimal fractions (1/5, for example) which are terminating but which are
not (at least in lowest terms) of the form k/10". Are there any binary frac-

P tions which aré terminating, but which are not of the form k/2" in their

lowest terms? Why or‘why not?




98. REAL NUMBERS AND FLOATING
POINT

A fixed-point representation, such as those of the preceding section, cannot nor-
mally handle certain very large and very small numbers (such as 6.061 X 10
or 6.626 X 10727) that occur in calculations. In order for a computer to process
real numbers, an alternative representation, known as floating point, is gen-
erally used.

The basic idea behind floating point is that we need three pieces of informa-
tion to specify a general real number such as 6.626 X 1077

(a) the sign (whether it is positive or negative);

(b) the exponent (that is, the power of ten, or —27 in this case, although in
floating-point format this is actually a power of 2—or sometimes 16—
rather than 10);

(c) and the fraction (that is, 6.626, which is not really a fraction, but in
floating point we express it as a fraction, which we always can do; that
is, we can write .6626 X 1072 instead of 6.626 X 107/, and here .6626
is a fraction, that is, less than 1).

Since this is all the information we need to express a real number, all we need
to do now is to specify a format. There are various floating-point formats; the fol-
lowing is the **short format” of large IBM computers such as the 4300 series:

(1) Each real number is specified in four bytes.

(2) The leftmost bit of the first byte is the sign; 0 means positive and 1 means
negative, just as with integers.

(3) The rest of the first byte is the exponent.

(4) The other three bytes are the fraction.

(5) The exponent is a power of 16 (this is unusual; in most floating-point for-
mats, it is a power of 2).

(6) The fraction is treated as a 6-digit hexadecimal fraction between .100000
and .FFFFFF (if it is less than .100000, we use the relation .Oxxxxx X 16"
= xxoxx0 X 16™!, repeatedly if necessary, to normalize the fraction, or put
it in the above range). ‘
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330 Real Numbers and Floating Point

' E | (7) The exponent, in the range from — 64 to 63, is biased by adding 64 to it; this
i b puts it in the range from O to 127. Thus an exponent of e is actually
' o represented as e + 64. (This is like biasing an electronic circuit by adding a
| "constant positive voltage in such a way that the voltage will always remain
| positive, no matter how it fluctuates.)

The reason for biasing is that, as long as two floating-point numbers are nor-
| malized (that is, have normalized fractions in the sense of (6) above), the one
3 with the larger exponent will always be larger. Hence we can compare two
: floating-point numbers by comparing their exponents, and then comparing the
¥ fractions if the exponents are equal. When we compare the exponents, biasing

effectively converts a signed comparison into an unsigned comparison, much as
- was done in section 54. In fact, the bias is constructed in the same way that it
- was in that section; that is, it consists of 1 followed by a string of zeroes.
i Figure 36 shows the ﬂoatmg -point representations of 2, 48, —22, and 1/512,
r o in the format above. Note how the exponent causes the actual position of the

. binary (or hexademmal) point to “‘float’’ through the fraction (and sometimes off
. ~ totheleft or off to the right), which is why this format is called floating-point.

i The number. zero is expressed in floating point with a fraction of zero; the
J 1 _ sign and thie exponent do not matter in this case, but it is customary to make
. them zero as well. Note that a floating-point number, in the above format, can
i ~ be changed into its negative by changing only one bit (the sign bit), unlike the
| case of twos’ complement integers. (There are other common floating-point for-
'l ‘ ‘ mats for which this is not the case.)

1

- ol EXERCISES

I

o 1. Express each of the following real numbers as a normalized floating-point
. number, in the format given in the text (use hexadecimal, and express
each quantity as 8 hexadecimal digits):

@k s
. (b) 1112
. \ *(C) 2113

2. In each case below, give the (decimal) real number whose expression in
the floating-point format of the text is given in hexadecimal as:

*(b) 42650000
(c) 1F000400 (express as a power of 2)

P *3.  One of the numbers in the preceding exercise is not normalized. Which
one is it? Express this number in normalized form.

I
|

l

»

|

i i ‘ (a) BF140000 (express as a fraction in lowest terms)
!

{

|

n

a
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2.0 0 0 0 O

Sign _Bias
| 4
o} 1000001 0010 l 0000 l 0000 | 0000 ‘ 0000 ' 0000

Exponent Fraction £ = .200000
e =1 (biased) (hexadecimal)

Number = 165 f = 16'x2-~2

30.0 0 0 0

[o] I'OOOOIO 001l ] OOOOI 0000 l 0000 ‘ 0000 I 0000

Sign _/Bias

Exponent Fraction f = ,300000
e »2 (biased) (hexadecimal)

Number = 16%x # = 16%x .3 = 30 (hexadecimdl) = 48 (decimal)

-1 0 0 0 0 0 0 O.

Sign _-Bias
f | l [ | !
| 1001000 0001 | 00001 0000 | 0000 ! 0000 | 0000
Exponent Fraction f = .100000
e =8 (biased) (hexadecimal)

Number » -16€x f= —168x .1 = - 10000000 (hexadecimal)

0O 0 8 0 0 0 0 0

Sign Bias
[ 4

ol otirito | 1000 I 0000 I 0000 ] 0000 ] 0000 ] 0000

Exponent Fraction f = .800000
e =-2 (biased) (hexadecimal)

Number = 16%x F= 16 2x .8 = .008{hexadecimal)= |1/ 512 (decimal)

Figure 36. Floating Point Representation of Real Numbers.

|
%

»
f



99. FLOATING-POINT OPERATIONS
|

H Once we have some numbers represented in floating-point format, what do we
i do with them? The answer, on the 6502, is that we call subroutines to add
o them, subtract or multiply or divide them, convert them to integer form and
‘ vice versa, and read them in or put them out. These subroutines are somewhat
|- like the integer multiplication and division subroutines that we introduced in

b sections 39 and 40.

!l ‘ It should be mientioned that, on large computers such as the IBM 4300 series,
i there is, in fact, a single instruction which adds two floating-point numbers; and
! the same is true for subtraction, multiplication, and division. This is actually
I

not nearly as much of a convenience as it would seem. Instead of one instruc-
i tion (floating-point multiply), you have one instruction (JSR, which calls the
‘ floating-point multiplication subroutine), and so on, throughout your program.

; Also, you pay a tremendous amount for having floating-point instructions,
E! P ) because the computers which have them are so much more expensive than
microcomputers such as the 6502.

Multiplication and division of floating-point numbers are actually easier than
addition and subtraction. A floating-point number with sign s, exponent ¢, and
fraction f may be expressed as s X b° X f where b is the base (16, for the
floating-point format of the preceding section) and s, the sign, is taken as 1 for
positive numbers and —1 for negative numbers. The product of s, Xb“'x f and
it $2Xb°3Xfy is (syXsg) X (b°IXb D) X (f1Xfo), and b 'xb? may be
R expressed as b° 172 1t follows that, to multiply two floating-point numbers, all

we have to do is to multiply the signs, add the exponents, and multiply the frac-
‘ ‘ tions. The result might not be normalized—the fraction .3 times itself gives .09
‘ (for example)—but if it is not normalized, the normalization rule of the preced-
; ing section has to be applied only once.
| In a similar way, dividing s;Xb“'Xf| by s,Xb“2Xf, gives (s,/s7) X
l E B°1/b°Y) X (f1/f2), and b!/b? may be expressed as b' “2. Hence in this
b case we would divide the signs, subtract the exponents, and divide the fractions.
Again the answer might not be normalized—the fraction .F divided by .1 gives
F in hexadecimal, for example—but, again, the normalization rule has to be
applied only once (in the reverse direction from the above).

-
. 332
|




Floating-Point Operations 333

The reason that addition and subtraction are harder is concerned with the
shifting that takes place when the binary points do not line up. We recall that, for
example,

2359 _ 2359
+2.359 +_2.359
238.259

and, in general, whenever we add two decimal fractions, we have to shift one of
them over so that the decimal point lines up with that of the other one. We saw
from Figure 36 that the binary point in a floating-point number ‘‘floats’’ one
position to the right each time the exponent is incremented by one. Hence if the
difference between the exponents is z, then the smaller number is shifted z
places to the right—in this case, z hexadecimal digits, or 4z bits—before addi-
tion. The same is true of subtraction.

The signs of two floating-point numbers being added or subtracted determine
whether the operation to be performed is actually an addition or a subtraction. If
the signs are unequal, then what was specified as an addition becomes a sub-
traction, and vice versa.

Subtraction is the one floating-point operation for which the normalization
rule might have to be applied more than once. For example, the hexadecimal
subtraction

.532684
—.532271 -
.000413

produces a fraction which has three leading zeroes, so that the normalization
rule must be applied three times.

Always remember that floating-point numbers are only approximations of real
numbers, and a succession of floating-point operations can easily tend to make the
approximations even worse. This is especially true of subtraction, even though it
might seem to be an exact operation (as above). If the first fraction above is off by
one in the last position, so that the answer becomes .000412 or .412000 X 167, this
is off by 1000 (hexadecimal), rather than off by one. Addition, multiplication, and
division of floating-point numbers may produce erroneous results even when the
numbers being added, multiplied, or divided are themselves exact.

Real numbers are often used in statistical calculations, which make use of
random numbers. The APPLE keeps a 16-bit random number, with bytes
reversed, in cells RNDL and RNDH (“random, low” and “random, high,”
with RNDL EPZ $4E and RNDH EPZ $4F). Every time RDKEY is called, these
locations act like a spinning roulette wheel, adding 1 over and over (ignoring
carry) until a key is pressed, at which point the roulette wheel stops, and the
number in these locations has been randomly selected.




334 Floating-Point Operations

EXERCISES

|

|

|

i ‘ 1. Explain in words how the floating-point numbers 42FF0000 and 41100000
, 11 are added, and how the result is produced. Check your work by converting
| ; each of these quantities into a real number, adding these real numbers,
‘ and converting the result back to normalized floating-point form.

!. *).  Explain in words how the floating-point numbers 41200000 and 41300000
“ are multiplied, and how the result is produced. Check your work by con-
I verting each of these quantities into a real number, multiplying these real
! " numbers, and converting the result back to normalized floating-point form.

i 3. Let Q be the real number whose floating-point form is 50800000 (in hexa-
decimal). What happens, in the computer, when we perform the computa-
~ tion (Q-+1)—Q? What point, noted in the text, does this example illustrate?




100. TYPELESS PROCESSING

We are now, finally, in a position to clear up a mystery that was left hanging in
section 7. In that section we took up the fact that all data in a computer—signed
integers, unsigned integers, character codes, or whatever—is encoded in
binary, as one or more bytes. It follows that when we are given one or more
bytes, representing a particular piece of data in some program, there is no way
to tell whether this is supposed to represent an integer, a real number, or some-
thing else, except by understanding the prograrn This is a fundamental fact
about data in any computer.

We know, however, that there are programming languages in which real
numbers and integers can be intermixed in computations. This seems to be
inconsistent with what we have just said. Suppose that we are using an inter-
preter, as described in section 94. Now consider the calculation of A+B, where
A and B can be either integers or real numbers. If they are real numbers, the
interpreter has to call a floating-point addition subroutine. If they are integers, it
has to add them as integers. How can it possibly decide which one of these to
do, if there is no way to tell a real number from an integer?

We note, first of all, that our difficulty depends on the fact that A and B can
be integers and then, later on, real numbers in the same run of the same pro-
gram. In some languages, such as FORTRAN, every real variable in a program
remains real throughout that program, and the same is true for integers, so deci-
sions like those discussed above can always be made. (In some versions of
BASIC, all integers are kept in the computer as real numbers. This slows down
the BASIC system, because now all addition has to be done in floating point;
but it does allow the BASIC system to make this kind of decision.)

The general answer to the above problem is known as fypeless processing. In
typeless processing, every variable in a program has a fype code, which is kept
in memory along with the value of the variable. There are many kinds of type
codes for a variable V; the simplest is possibly the following:

TCV =0 means that V is currently an integer
TCV =1 means that V is currently a real number

Both the value of V and the value of TCV may change as the program is run-
ning. If V is an integer, for example, and becomes real, then TCV is set to 1.

335




336 Typeless Processing

The addition of two numbers A and B, with type codes TCA and TCB ag
above, now proceeds as follows:

(1) If TCA = TCB = 0, add A and B as integers.

(2) If TCA = TCB = 1, add A and B as real numbers.

(3) If TCA = 1, but TCB = 0, add A and CONVR(B) as real numbers,
where CONVR(B) is the real number corresponding to the integer B
(CONVR means ‘‘convert toreal’’).

4y fTCA =0, but TCB = 1, add CONVR(A) and B as real numbers.

Tt might appear that typeless processing is wasteful of both space and time,
because of all the type codes and the testing, as above, that must take place every
time we do an operation, even as simple as adding. However, there are many pro-
grams which run so fast, and take up such a small portion of available memory,
that the extra convenience of typeless processing becomes worth its cost.

In more general typeless-processing, there will be more than two types. In
some languages, ‘‘integer’’ and ‘‘integer array’’ are different types; indeed, a
single integer array of dimension # is a different type from a single integer array
of any other dimension m % n. In LISP, a list processing language, “‘list’”’ is a
type, and ‘‘atom’ (which includes integers) is another type. In SNOBOL, a
string processing language, ‘‘integer]” is one type and ‘‘string’’ is another.

EXERCISES

*1. In some versions of BASIC, there are three kinds of variables: real vari-
ables, whose names contain letters and digits only; integer variables,
whose hames end in the % character; and string variables, whose names
end in the $ character. Is typeless processing appropriate for such a ver-
sion of BASIC? Why or why not?

2. In the programming language APL, variable names may represent arrays,
and there are array operations on these variables. Thus, for example, if A
and B are array names, then setting A equal to A+B is equivalent to set-
ting A(k) equal to A(k)+B(k), for all k in the range of these arrays. Like-
wise, setting A equal to A,B (using the comma as an operator like +) is
equivalent to setting A equal to the concatenation of the arrays A and B; if
A contains m elements and B contains n elements, then the new array
value of A will contain m+n elements. Assuming that all array elements
are integers, is typeless processing appropriate for this language? Why or
why not? ‘

*3. Suppose that the quantity J, in the 6502, has a type code TJ. If TJ =0,
then J is an unsigned 8-bit quantity. If TJ = 1, then J is an unsigned 16-bit
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- quantity, kept with bytes reversed as usual. The quantity K, in the same
way, has the type code TK. Explain, in words, how typeless processing
would be used to set J = J+K under these circumstances. (There are four
cases to consider. Note that the operation of add1t10n does not, in itself,
change the type code of J.)

PROBLEM 6 FOR COMPUTER SOLUTION
EIGHT QUEENS

Our final problem is one which is considerably easier than 1t looks. Consider the
chessboard below, with eight queens on it:

Q t

a b c d e ' f 9 h

No two of these queens attack each other, meaning (by the rules of chess) that
no two of them are on the same row, column, or diagonal row. Finding posi-
tions like this is not at all easy, by hand; your task is to find all of them (there
are 92, in fact) by computer.

In such a position there is clearly one and only one queen in each row, 1
through 8 (otherwise two queens would attack each other along a row). Hence
we can make a table:

ROW 1 2 3 4 5 6 7 8
COLUMN a e h f ¢ g b d

for the above position, and refer to it as ‘‘position aehfcgbd.” The trick is to
generate all such positions in alphabetical order. (We will use *‘generate’ to
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mean ‘‘find and display.”’) All the positions starting with a (like aehfcgbd) are
generated first; then all those starting with b; and so on. Within those starting
with a, we would start with those that started with aa or with ab, if there were
any, which there are not, because a queen in row 2 and column a or b would
attack a queen in row 1 and column a. (There are no posmons starting with ac
or ad either, but this takes much longer to figure out.)

What we now have to do is to number the diagonal rows also. There are 15
diagonal rows from upper left to Jower right (let us call these fows of type P),
and 15 more from upper right to lower left (let us call these rows of type Q).
So-we set up two arrays, P and Q, of length 15, both initialized to zero. When-
| ever we place a queen on the board, in row x of type P and row y of type Q, we
‘ set P(x) and Q(y) to 1, to indicate that these two diagonal rows are now occu-
pied. Before we do this, we test whether P(x) or Q(y) was already 1; if so, we
cannot place this queen since we already have another one on the board that
would. attack it. When this same queen is removed from the board, P(x) and
Q(y) are set back to zero.

The program now proceeds as follows. Place a queen on the board in row 1
and column a (going through the diagonal row logic above). Now generate all
positions starting with a (see the next paragraph). When this is done, remove the
queen from row 1 and column a and place it back in row 1 and column b, and
proceed to generate all positions starting with & (in the same way). Keep on
doing this until you have generated all positions.

To generate all positions starting with a, try to place the next queen on each
of the columns a, b, ¢, and so on, in turn, and row 2. The first one which is pos-
1 sible is ¢. Now generate all positions starting with ac in exactly the same way:
move to row 3 and try each column one at a time. If you are on row i and you
run out of columns, then go back to row i—1 (actually, decrease i by 1 and then
go back to row i, for the new i), remove the queen that is in that row (unless the
new [ = 0, in which case the program is finished), and try to place a queen in
the next position in that row, after the position it was in.

When you have generated a good position, like the one in the diagram above,
display it (using €OUT), and then proceed forward from that position, exactly
as if you had failed to find a good position. It might pay you to write this pro-
H gram in BASIC first and debug it that way (make sure that you generate a total of 92
. positions) and then rewrite it in assembly language.
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I

; \ | Table 1
BASIC in Terms of FORTRAN, PL/I, and Pascal

I
7‘i e ASSIGNMENT v=e where v is a variable and e is an expression. Like v=e¢ in
FORTRAN,; like v=¢; in PL/I; like v: = ¢ in PASCAL. BASIC

does not use semicolons or colon-equals.

BLANKS Unlike FORTRAN (and APPLE BASIC), standard BASIC does
not ignore all blanks. Blanks may not appear inside a variable
name. (In assembly language, blanks can appear only where
they are explicitly allowed.)

CONDITIONAL IF ¢ THEN n (where # is a line number—see below) Like IF (¢)

STATEMENTS GOTO n in FORTRAN; like IF ¢ THEN GOTO n; in PL/I (see
GO TO below); like IF ¢ THEN GOTO # in PASCAL. IF ¢
THEN s (where s is a statement) Like IF (¢) s in FORTRAN; like
IF ¢ THEN s; in PL/; like IF ¢ THEN s in PASCAL.

CONSTANTS Except in some extended versions of BASIC, no difference be-
tween integer and real constants. There are also string constants

. (which we will not consider here).
END - As far as we are concerned, like END in FORTRAN, PL/I, or

PASCAL. :
GOSUB ' GOSUB nislike CALL S in FORTRAN or PL/1, or S (by itself) in

- PASCAL, where S starts at line n. BASIC has no subroutine

. . . parameter ‘facility.
I GOTO Like GOTO in FORTRAN, PL/I, or PASCAL, except that in PL/I
. one writes GO TO v where v is a label (see LINE NUMBERS,
I - _ below), and GO TO is not discouraged in BASIC as it is in

PASCAL.
INPUT-OUTPUT INPUT and PRINT statements, with which we will not be con-
‘ cerned here.
! ITERATION FOR v=m TO n followed by a group of statements g followed by
: 4 NEXT v—Like DO k v=m,n followed by g (having final

dqt statement number n) in FORTRAN. Like DO v=m TO n; g
END; in PL/I. Like FOR v:=m TO n DO BEGIN g END .a
/R PASCAL. There is also FOR v=m TO n STEP j in BASIC, but
i we shall not be concerned with this variation.

i LINE NUMBERS Must be in sequence in BASIC. Otherwise they are like statement
| numbers in FORTRAN or labels in PASCAL, or labels (except

;,

i

i /" that in BASIC they are integers) in PL/L

i RELATIONAL < >» <= >= = <>—Like .ILT. .GT. .LE..GE. .EQ. .NE. in
;'3 " OPERATORS FORTRAN; like LT GT LE GE =—= in PL/.

/- RETURN Like RETURN in PL/I (except that there is no RETURN (e)
i facility) or FORTRAN. (In PASCAL, one returns from a sub-
l 1 routine by executing its last statement.)

o VARIABLE One or two characters only, except in extended versions of
- NAMES BASIC. Arrays declared with DIM v(s), like DIMENSION v(s)

DCL v(s) in PL/I.

; ) ‘ - in FORTRAN, VAR v; ARRAY [range] OF ¢ in PASCAL, or
i H
I
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Hexadecimal-Decimal and Decimal-Hexadecimal Conversion

341 ,

Table 2

Second First
Digit  Digit

Fourth
Digit

Third
Digit

0 0 0 0 0
1 4096 256 16 1
2 8192 512 32 2
3 112288 768 48 3
4 116384 1024 64 4
5 120480 1280 80 5
6 {24576 1536 96 6
7 128672 1792 112 i
8 | 32768 2048 128 8
9 | 36864 2304 144 9
A'| 40960 2560 160 10
B | 45056 2816 176 11
C | 49152 3072 192 12
D| 53248 3328 208 13
E | 57344 3584 224 14
F | 61440 3840 240 15

Hexadecimal to Decimal

To convert B7DC to decimal, look up:

B under Fourth Digit — 45056
7 under Third Digit — 1792
D under Second Digit — 208
C under First Digit — 12
Then add. Answer is — 47068

Fifth Fourth Third Second First

Digit Digit  Digit Digit  Digit
0 0 . 0 0 0 0
1 2710 3E8 64 A 1
2 4E20 D0 C8 14 2
3 7530 , BB8 12C 1E 3
4 9C40 FAO 190 28 4
5 C350 1388 1F4 32 5
6 EA60 1770 2538 3C 6
7 11170 1B58 2BC 46 7
8 13880 1F40 320 50 8
9 16F90 2328 384 5A 9

Decimal to Hexadecimal

To convert 47068 to hexadecimal, look up:

4 under Fifth Digit — 9C40 o
7 under Fourth Digit ~ — 1B58 8
6 under Second Digit —— 3C
8 under First Digit — 8
Then add. Answer is — B7DC

Example




H ‘ (logical AND); sets Z; sets

! i i S and V to leftmost two

- bits of v, respectively '

| ' 28 none BMI L BRANCHONMINUS GoestoL if
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|
Table 3

A Names, Meanings, and Flag Settings of 6502 Instructions
} :
! [ Section  Sets . .

{] Number Flags Mnemonic Name and Meaning

I

| 15 ZSCV ~ ADC v  ADD WITHCARRY Sets A=A+v+C

- 52 7S AND v  LOGICALAND Sets A=A andv

‘ 31 ZSC ASL v  ARITHMETIC SHIFT LEFT Sets

i v=2%v (if v missing, sets

i A=2%A)

i 19  none BCC L  BRANCH ON CARRY CLEAR Goes
toLif C=0

’ 19 none BCS L  BRANCHON CARRY SET Goss to

’ LifC=1

I 20 none BEQ L BRANCHON EQUAL GoestoLif

A ’ Z=1

1. 55 ZSV BIT v~ BITTEST Calculates A and v

i
|
; } . S=1
I 20 ° none BNE L BRANCH ONNOTEQUAL Goes to
i ’ LifZ=0
28 none BPL L  BRANCHONPLUS GoestoLif
3 5=0
i ; - 42 B BRK BREAK Goes to the monitor
ﬁ ‘ 56 none BVC L. BRANCH ON OVERFLOW CLEAR
| Goes to L if V=0
‘ ‘ 56 none BVS L  BRANCHONOVERFLOW SET Goes
“ p toLif V=1
g 15 C CLC CLEAR CARRY  Sets C=0
g;!; 65 D CLD CLEAR DECIMAL MODE  Sets D=0
N 68 I CLI CLEAR INTERRUPT FLAG  Sets
{‘,j’: . 1=0 (enables interrupts)
(IR 56 \% CLV CLEAR OVERFLOW FLAG Sets V=0
|i' ! 20 Z8C CMP v  COMPARE (WITH A) Calculates
[ A—v; sets flags
k 0 Zc CPX v COMPAREWITHX Calculates
i : X—v; sets flags
.! J 20 Z8C CPY v COMPAREWITHY Calculates
i ?‘ . Y —v; sets flags
i - 9 VA DEC v  DECREMENT MEMORY Sets v=y—1
. 9 78 DEX DECREMENT X Sets X=X~ 1
< | 9 VA DEY DECREMENT Y Sets Y=Y—-1
*. ‘ 54 YA EOR v  EXCLUSIVEOR Sets A=A eorv

i Continued on next page
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Table 3—Continued

Section  Sets Mnemonic Name and Meaning
Number Flags :
9 VA INC v INCREMENT MEMORY  Sets v=v+1
9 VA INX INCREMENT X Sets X=X+1 :
9 VA INY INCREMENTY Sets Y=Y+1
20 none JVMP L JUMP Goes to L (direct or indirect)
25 none JSR L JUMP TO SUBROUTINE  Calls L
8 78 LDA v LOADA Sets A=v
8 VA LDX v LOAD X Sets X=v
8 VA LDY v LOADY Sets Y=v .
31 ZSC LSR v LOGICAL SHIFT RIGHT  Sets
v=v/2 (unsigned; if v
missing, sets A = A/2)
50 none NOP NO OPERATION  Does nothing
53 VA ORA LOGICAL OR Sets A=A orv
60 none PHA PUSHA Saves A on the stack
67 none PHP PUSHP Saves P on the stack
60 VA PLA PULL A Restores A from stack
67 all PLP PULLP Restores P from stack
34 ZSC ROL v ROTATE LEFT  Sets v=2#v+C (if
v missing, sets A=2*A+C)
34 Z8C ROR v ROTATERIGHT  Sets v=(256+C+
v)/2 (if v missing, sets A= )
(256+C+ A)/2)
68 all RTI RETURN FROM INTERRUPT  Returns
to program being run from an
interrupt routine .
39 none RTS RETURN FROM SUBROUTINE Returns

to calling program from subroutine
17 Z8CV SBC v SUBTRACT WITH CARRY  Sets A=

(A-W+(1-0
17 C SEC SET CARRY  Sets C=1
6 D SED SET DECIMAL MODE  Sets D=1
68 1 SEI SET INTERRUPT FLAG  Sets I=1
(disables interrupts)

8 none STA v STORE A Sets v=A

8 none STX v STORE X Sets v=X

8 none STY v STOREY Sets v=Y
18 7S TAX TRANSFERATO X Sets X=A
18 ZS TAY TRANSFERATOY Sets Y=A
60 7S TSX TRANSFER SPTOX  Sets X=SP
18 7S TXA TRANSFER XTO A  Sets A=X
60  none XS TRANSFER X TO SP  Sets SP=X
18 Z8 TYA TRANSFER Y TOA Sets A=Y

(For machine language forms and instruction times, see Table 4)




344

Table 4

Assembly and Machine Language Forms and Instruction Timing

Appendix

(CONVENTIONS: L and Q have address abcd; Z has address 00ef; n has hexadecimal value gh; jk
satisfies AI+2+jk = AL, where Al = address of this instruction, and AL = address of L)

Assembly Number of  Machine Assembly Number of  Machine

Language Cycles® Language Language Cycles® Language
ADC Q 4 6D cd ab CMP #n 2 C9 gh
ADC Z 3 65 ¢f CMP Q,X 41 DD cd ab
ADC #n 2 69 gh CMP Q,Y -4 D9 cd ab
ADC Q,X 4! 7D cd ab CMP  (Z,X) 6 Clef
ADC Q,Y 41 79 cd ab CMP (z),Y 5t Dlef
ADC (Z,X) 6 61¢f CMP Z,X 4 D5 ¢f
ADC (Z),Y 5 Tlef CPX Q 4 EC cd ab
ADC Z,X 4 T5ef CPX Z 3 E4 of
AND . Q 4 . 2Dcdab CPX #n 2 EO gh
AND Z 3 25¢f CPY Q 4 CCcdab
AND #n 2 29 gh CPY Z 3. Cd ef
AND Q,X ’ 4 3D cd ab CPY #n 2 €O gh
AND Q,Y 4l 39 cd ab DEC Q 6 CE cd ab
AND (Z,X) 6 21ef DEC Z 5 C6 ef
AND (Z),Y 51 3lef DEC Q,X 7 DE ¢d ab
AND Z,X 4 35¢f DEC Z,X 5 C6ef
ASL 2 0A . DEX 2 CA
ASL Q 6 OE cd ab DEY 2 88
ASL Z 5 06 ¢f . EOR Q 4 4D cd ab
ASL @,X 7 1E cd ab EOR Z 3 45 ef
ASL Z,X 6 16¢f EOR #n 2 49 gh
BCC L 32 90 jk EOR Q,X 4l 5D cd ab
BCS L 32 BO jk EOR Q,Y 41 59 cd ab
BEQ L 32 FO jk EOR (Z,X) 6 41 ¢f
BIT Q 4 2Ccdab EOR (Z),Y 5! 51¢f
BIT Z 3 24 ¢f EOR Z,X 4 55 ¢f
BMI L 32 30 jk INC Q 6 EE cd ab
BNE L 32 DO jk INC Z 5 E6 ef
BPL L 3R 10 jk INC Q,X 7 FE cd ab
BRK 7 00 INC Z,X 6 F6ef
BVC L 32 50 jk INX 2 E8
BVS L 3 70 jk INY 2 Ccs
CLC 2 is JVWP L 3 4C cd ab
CLD 2 D8 JMP (L) 5 6C cd ab
CLI 2 58 JSR .L 6 20 cd ab
CLV 2 B8 LDA Q 4 AD ¢d ab
CMP Q 4 CD cd ab LDA Z 3 A5 ef
CMP Z 3 C5e¢f LDA #n 2 A9 gh

Continued on next page
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Table 4—Continued

Assembly Number of Machine Assembly Number of  Machine

'Plus one if addition of index to address causes carry into high order byte of address.

*Minus one if the instruction does not branch; plus one if addition of signed relative address causes the
high-order byte of the address to increase or decrease by 1.

*One cycle = 0.9775 microseconds; 1,023,000 cycles = 1 second.

Language Cycles® Language Language Cycles® Language
IDA Q,X 41 BD cd ab ROR 2 6A
IDA Q,Y 4! B9 cd ab ROR Q 6 6E cd ab
LDA (Z,X) 6 Alef ROR Z 5 66 ef
IDA (2),Y 51 Blef ROR Q,X 7 TE cd ab
LDA Z,X 4 B5 ¢ef ROR Z,X 6 76 ¢
DX Q 4 AE cd ab RTI 6 40
DX Z 3 A6 of RTS 6 60
LDX #n 2 A2 gh SBC Q 4 ED cd ab
DX Q,Y 4! BE cd ab SBC Z 3 E5ef
DX Z,Y 4 B6 of SBC #n 2 E9 gh
1DY Q 4 AC cd ab SBC Q,X 4! FDcd ab
DY Z 3 Aef SBC Q,Y 41 F9 cdab
LDY #n 2 AO gh SBC (Z,X) 6 Elef
DY QX 4! BCcdab . SBC (Z),Y 51 Flef
DY z,X 4 B4 of SBC Z,X 4 F5ef
LSR 2 4A SEC 2 38
LSR Q 6 4F cd ab SED 2 F8
LSR Z 5 46 ef SEI 2 78
LSR Q,X 7 5E cd ab STA Q 4 8D cd ab
LSR Z,X 6 56 ¢f STA Z 3 85 ¢f
NOP 2 EA STA Q,X 5 9D cd ab
ORA Q 4 0D cd ab STA Q,Y 5 99 cd ab
ORA Z 3 05 ef STA (Z,X) 6 81 ¢f
ORA #n 2 09 gh STA (2),Y 6 91 ¢f
ORA Q,X 41 1D cd ab STA Z,X 4 95 of
ORA QY 4! 19 cdab STX Q 4 8E cd ab .
ORA (Z,X) 6 Olef STX Z 3 86 ¢f
ORA (Z),Y 5! 11¢f STX Z,Y 4 96¢f
ORA Z,X 4 15 ¢ STY Q 4 8Ccdab
PHA 3 48 STY Z 3 84 ef
PHP 3 08 STY Z,X 4 94 ef
PLA 4 68 TAX . 2 AA
PLP 4 28 TAY 2 A8 i
ROL 2 2A TSX 2 BA i
ROL Q 6 2F cd ab TXA 2 8A j
ROL Z 5 26 of TXS 2 9A il
ROL Q,X 7 3E cd ab TYA 2 98 \ ‘
ROL Z,X 6 36¢f ‘
[
For flag settirigs and the meaning of each instruction, see Table 3; for explanations of the addressing ;1
modes, see Table 8; for maching language forms in numerical order, see Table 5. 1 }‘
|
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Table 5

Appendix

6502 Instructions—Machine Language in Numerical Order

)

- :
(CONVENTIONS: L and Q have address abed; Z hias address 00ef; n has hexadecimal
value gh; jk satisfies AI+2 +jk = AL, where Al = address of this instruction, and

AL = address of L)

Machine Assembly Machine Assembly
Language Language Language Language
00 BRK 45 ef EOR Z
Olef ORA (Z,X) 46 of LSR Z

05 ¢f ORA Z 48 PHA

06 ¢f ASL Z 49 gh EOR #n
08 PHP 4A LSR

09 gh ORA #n 4C cd ab JMP L
0A ASL 4D cd ab EOR Q
0D cd ab ORA Q 4F cd ab LSR Q
O cd ab ASL @ 50 jk BVC L
10jk BPL L 51 ¢f EOR (Z),Y
1lef ORA (Z),Y 55 ef EOR Z,X
15¢f ORA Z,X 56 ef LSR Z,X
16 ¢f ASL Z,X 58 CLI

18 CLC 59 cd ab EOR Q,Y
19 cd ab ORA Q,Y ' 5D cd ab EOR Q,X
1D cd ab ORA Q,X 5E cd ab LSR Q,X
1E cd ab ASL @, X 60 RTS

20 cd ab JSR L 61 ¢f ADC  (Z,X)
21¢f AND (Z,X) 65 ef ADC Z
24 of BIT Z 66 ef ROR Z

25 ¢f AND Z 68 PLA

26 ef ROL Z 69 gh ADC H#n
28 PLP 6A ROR

29 gh AND #n 6C cd ab IMP (L)
2A ROL 6D cd ab ADC Q
2C cd ab BIT Q 6E cd ab ROR Q

2D cd ab AND Q 70 jk BVS L

2E cd ab s ROL Q 71 ef ADC (Z),Y
30 jk - BMI L 75 ef ADC Z,X
31ef AND (2),Y 76 ef ROR Z,X
35 ¢f AND Z,X 78 SEI

36 ¢f ROL Z,X 79 cd ab ADC Q,Y
38 SEC TDcdab ADC Q,X
39 cdab AND Q,Y TE cd ab ROR Q,X
3D cd ab AND Q,X 81éf STA (Z,X)
3E cd ab ROL Q,X 84 of STY Z
40 RTI 85 ef STA Z
4l ef EOR (Z,X) 86 ef STX Z

Continued on next page
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Table 5—Continued
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Machine Assembly Machine Assembly
Language Language Language Language
88 DEY Clef CMP (Z,X)
8A TXA C4ef CPY Z

8C cd ab STY Q C5¢ef cMP Z

8D cd ab STA Q C6 ef DEC Z

8E cd ab - 8TX Q Cc8 INY

90 jk BCC L C9 gh CMP  #n
91 ¢f STA (Z),Y CA DEX

94 of STY 7,X CE cd ab CPY Q

95 ef STA Z,X CD cd ab CMP Q

96 of STX Z,Y CE cd ab DEC Q

98 TYA DO jk BNE L

99 cd ab STA Q,Y Dlef cMP (Z2),Y
9A TXS D5 ef cMP Z,X
9D cd ab STA Q,X D6 ef DEC Z,X
A0 gh LDY #n D8 CLD

Alef LDA (Z,X) D9 cd ab CMP Q,Y
A2 gh ILDX #n DD cd ab CMP Q,X
Ad ef LDY Z DE cd ab DEC Q,X
A5 ef IDA Z EO gh CPX 3#n
A6 ef LDX Z Elef SBC (Z,X)
A8 TAY Ed ¢f CPX Z

A9 gh LDA H#n E5 ef SBC Z

AA “TAX E6ef INC Z
ACcd ab LDY Q E8 INX

AD cd ab LDA Q E9 gh SBC  #n
AE cd ab LDX Q EA NOP

BO jk BCS L EC cd ab CPX Q
Blef LDA (Z2),Y ED cd ab SBC Q

B4 of LY Z,X EE cd ab INC Q

B5 ef LDA Z,X FO jk BEQ L

B6 o LDX Z,Y Flef SBC (Z),Y
B8 CLV F5ef SBC Z,X
B9 cdab IDA Q,Y F6¢f INC Z,X
BA TSX F8 SED

BC cd ab LDY Q,X F9 cd ab SBC Q,Y
BD cd ab IDA Q,X FD cd ab SBC @Q,X
BE cd ab DX Q,Y FE cd ab INC Q,X
Cogh CPY #n :

For flag settings and the meaning of each instruction, see Table 3.
For assembly language instructions in alphabetical order, see Table 4.
For explanations of the addressing modes, see Table 8.
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Table 6
LISA Pseudo-Operations and Extended Mnemonics

. Pseudo- Section of  Description (Nore: {label} means an optional label; gpe]
Operation This Text  means a required label; otherwise, no label)

{label} ADR a 63 Puts the 16-bit quantity a (with symbolic addressing) in
memory, with bytes reversed (right-hand byte, then left-
hand byte).

{label} ASC s 26 Puts the string s in memory, with the leftmost bit of each
byte equal to 0 if s is “ccce...c™ and to 1if s is "cccc..c",

{label} BFL & 83 Branch on false to the label ; equivalent to BEQ k.

{label} BGE & 28 Branch to the Iabel & on greater-or-equal; equivalent to BCS
k.

{label} BLK = 73 Puts the string s in memory, with the leftmost two bits of
each byte set to 01 (blinking mode—characters “‘blink’’ on
the screen). .

{label} . BLT & 28 Branch to the label £ on less-than; equivalent to BCC k.

{label} BTR & : 83 Branch on true to the label k; equivalent to BNE k.

{label} “BYT « 26 -+ Puts the rightmost 8 bits of the 16-bit quantity a (with sym-

: bolic addressing) into memory.
{label} DCI 73 Puts the string s in memory, with the high-order bit of its
! last byte different from that of the rest of the string (see
ASQ).
DCM  vet’ 92 DOS commands to LISA (DCM “OPEN F” and DCM
) ‘ . “WRITE f” at start, DCM “CLOSE” just before END,

i produce‘f as a disk listing file).

{label} DFS =& 11,13 Reserves n bytes for the variable or array labelled by label
at this point (and does not set them to any 1nitial values).

. END 11 Last statement in a program (one and only one END in a
program).

label EPZ a 74 Sets label equivalent (see EQU below) to a in page zero.

label EQU « 25 Sets label equivalent to a. (‘‘Equivalent’”” means: wherever

f label appears, the program acts as if @ had been substituted
for label.)

{labell HBY a 63 Puts the leftmost 8 bits of the 16-bit quantity @ (with sym-
bolic addressing) into memory.

{labell HEX & 73 Puts the string 7 of hexadecimal digits (not in quotes) in
memory, two hexadecimal digits in each byte.

{label} INV s 73 Puts the string s in memory, with the leftmost two bits of
each byte set to 00 (inverse mode—black on white).
LST SR Turns on the listing option (normally on; see NLS).
NLS 92 Turns off the listing option, so that assembled instructions
will not be listed, unless and until LST is specified.
OBJ a 51 Specifies program to be assembled into memory at the
address a, normally $0800, regardless of origin (sce ORG).
ORG a 11 Specifies program to start at the address a when it is exe-
cuted. (May be assembled somewhere else, with OBI, and
moved later.) .
Continued on next page
|
i
|
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Table 6—Continued

Pseudo- Section of  Description (Note: {label} means an optional label; label
Operation This Text means a required label; otherwise, no label)
PAG 92 Page eject for printer listings. Will skip to the top of the
next page if you are assembling to the printer.
{label} STR s 73 Puts the string s in memory, preceded by a 7-bit length
accompanied by the high-order bit of the rest of the string
(LISA 1.5), or an 8-bit length (LISA 2.5; see ASC).
{label} XOR v 54

Exclusive OR with v; same as EOR v options for v are the
same as those for EOR v).
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I Table 7
‘ Meanings of Special Characters in LISA
- Section of
Character This Text  Description
P Asterisk * 30 Current location. (ALPHA BEQ #+!5 is equivalent to
s ALPHA BEQ ALPHA +!5)
g‘ Backspace «— 46 For backing up over characters, to correct a mistake.
Colon 81 Follows a label if nothing else follows that label on this
| . line.
/ Comma > 13 For indexing (,X means index register X; , Y means index
l! register Y)
',ii Control-0,J,K,L 46 These characters allow the cursor to be moved around the
g} screen for correcting mistakes.
' Dollar sign $ 8 Precedes a hexadecimal number ($80 means 80 in hexa-
: . decimal, or 128 in decimal)
Exclamation point ! 8 - Precedes a decimal number (1128 means 128 in
decimal, or 80 in hexadecimal) R
Hyphen (minus): — 12,23 Subtraction (if T is the cell with address n, then T — !k is
the cell with address n— k)
Number sign # 8 Immediate addressing (LDA ## means load the number
’ : . n, or the lower half of the 16-bit constant n)
" Parentheses O 58,75,76  Indirect addressing (JMP (L) or op (Z,X) or op (4),Y
where op is LDA, STA, ADC, SBC, CMP, AND,
ORA, or EOR)
Percent sign %o 8 Precedes a binary number (%10000000 means
10000000 in binary, or 80 in hexadecimal, or 128 in
decimal)
Plus sign + 12,23 Addition (if T is the cell with address n, then T+!k is
’ the cell with address n + k)
Quotes (double) " 24 “ecee... M s the string cece...c with double " replaced
by single " and leftmost bit of each byte = 1; "c is
shorthand for # “c
Quotes (single) ! 24 *ceee...c' is the string ccec...c with double * replaced
by single ' and leftmost bit of each byte = 0; 'c is
shorthand for # ¢!
Repeat REPT/ 46 Holding down any key k and REPT together produces
kkkk. ..
Retype (right arrow) — 46 After correcting mistakes, allows you to retype the rest
of the (presumably correct) characters on the line.
Semicolon ; 18 Blank followed by semicolon (or semicolon in column
1) precedes a comment (ignored by the assembler)
Slash / 58 High order immedfate addressing (LDA /n means load
the upper half of the 16-bit constant )
Space (blank) . 19 One or more spaces precede and follow the mnemonic

code on each line (and the semicolon if it is used)
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Table 8

6502 Instructions—Explanations of Addressing Modes

Addressing Mode Section of

Symbol Name This Text Description

L(MP, Absolute 27 Jump is to the cell with address abcd, where cd is
JSR) the second and ab the third byte of the instruction.

L (other) Relative 27 Branch is to the cell with address pgrs+2-+jk,
where this instruction is at addresses pgrs and
pgrs+1, and jk is the signed integer at address
pgrs+1.

*n Immediate 8 Refers to the number in the second byte of the
instruction. .

None Implied or 10 No reference required;-or, in the case of shifts, the

accumulator A register is shifted.

Q Absolute 8 Refers to-the contents of the cell with address abcd,

(extended) where cd is the second and ab the third byte of the
. instruction.
Q) Indirect (not 58 Refers. to the contents of the cell with address pgrs,
' indexed) where cell abed (as above) contains rs and cell
abed+1 contains pq.

Q.X Absolute, 13 Refers to the contents of the cell with address

indexed by X abcd-+xx, where abed is as above and xx is in the X
register.

Q.Y Absolute 13 Refers to the contents of the cell with address

indexed by Y abed+yy, where abed is as above and yy isinthe Y
register. :

Z Zero page 74 Refers to the contents of the cell with address 00¢f,

(direct) where ef is the second byte of the instruction.
Z.X Zero page, T4 Refers to the contents of the cell with address
indexed by X 00¢f-+xx, where ¢f is as above and xx is in the X
register.
(Z,X) Pre-indexed 75 Refers to the contents of the cell with address pgrs,
indirect where cell 00ef+xx (with ef and xx as above) con-
tains 7s and cell 00gf+xx+1 contains pq.

7Y Zero page, 74 Refers to the contents of the cell with address

. indexed by Y 00ef+yy, where ef is as above and yy is in the Y
register.

,Y Post-indexed 76 Refers to the contents of the cell with address

indirect pars+yy, where cell 00ef (with ef as above) con-
tains rs, cell 00ef+1 contains pq, and yy is inthe Y
register.

This table explains the notations used in Tables 4 and 5. Note that X and Y must be the letters Xand Y them-

selves, while L, Q, and Z may be replaced by any label.
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B Table 9
} | APPLE Character Codes—Letters and Digits
i
( Character Character Codes Character Character Codes
! Lower case
? , Normal Control Inverse Blinking (optional) Normal Inverse Blinking
| ]
i A CL 81 01 41 El 0 B0 30 70
! B, c2 82 02 42 E2 1 B1 31 71
‘ C C3 83 03 43 E3 2 B2 32 72
D C4 84 04 44 E4 3 B3 33 73
E C5 85 05 45 ES 4 B4 34 74
F 6 86 06 46 E6 5 B5 35 75
1 G c7 87 07 47 - E7 6 B6 36 76
H 8 88 08 .48 E8 7 B7 37 71
| I o 89 09 49 E9 8 BS 38 78
! J CA, 8A 0A 4A EA 9 B9 "39 79
| K CB 8 OB 4B EB
L CcC 8C 0C 4C EC . .
N CE 8E (E 4E EE :
O CF 8F OF 4F EF Backspace 88 Control-H
P DO 90 10 50 FO Bell 87 Control-G
Q D1 91 11 51 - K1 Carriage return 8D Control-M
R D2 92 12 52 F2 Escape 9B Control-[*
S D3 93 13 53 F3 Left arrow 88 Control-H
T D4 f o4 14 54 F4 Right arrow 95 Control-U
U D5 95 15 55 F5
\'% D6 96 16 56 F6
w D7 97 17 57 F7
X D8 98 18 58 F8
Y D9 99 19 59 F9
Z DA 9A7 1A 5A FA
ISee Table 10.
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Table 10

APPLE Character Codes—Special Characters

Character Normal Control Inverse Blinking

Ampersand & A6 26 66
Apostrophe ' A7 27 67
Asterisk * AA 2A 6A
At-sign @ Co 80 00 40
Backslash \ DC 9C

Circumflex ° DE 9E

Colon BA 3A TA
Comma , AC 2C 6C
Division / AF 2F 6F
Dollar sign $ A4 24 64
Equals = BD 3D 7D
Exclamation point ! Al 21 61
Greater than > BE 3E 7E
Hyphen - AD 2D 6D
Left bracket [ ‘DB 9B

Left parenthesis ( A8 28 68
Less than < BC 3C 7C
Minus sign - AD 2D 6D
Number sign # A3 23 63
Percent sign % A5 25 65
Period AE 2E 6E
Plus sign + AB 2B 6B
Question mark ? BF 3F 7F

Quote (double) " A2 . 22 62
Quote (single) ! A7 27 67
Reverse slash \ DC 9C

Right bracket 1 DD 9D

Right parenthesis ) A9 29 69
Semicolon ; BB 3B 7B
Slash / AF 2F 6F
Space (blank) A0 20 60
Underline — DF 9F

(For backspace, bell, carriage return, escape, and left and right arrow, see Table 9.)
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Continued on next page

Appendix
i o Table 11
1 APPLE Monitor Subroutines and Other Special Locations
ﬁ ‘ , Hexa- Section May
: decimal of this Overwrite
Name Address Text Registers Description
BELL1 $FBD9 72 AX Gives a “‘beep” on the APPLE’s speaker (1/10
of a second).
cout $FDED 25 none Outputs the A register as a single character
. (normally to the screen; this assignment can be
changed).
‘ CcouT1 $FDFO 91 none Outputs the A register as a single character to
the screen (only).
CROUT $FDSE 25! A Outputs a carriage return ($8D).
‘ GETLN $FD6A 25! AX)Y Outputs a prompt character (normally * but
E ' kept in PROMPT—see below) and then reads
. . one line (see GETLNI).
‘- GETLN1. $FD6F 74 AX,)Y Reads into INBUF (see below) one line of input
iy : characters terminated by (and including) a car-
' riage return; length returned.in X.
f: GETLNZ $FD67 25 AX)Y Outputs a carriage return and then calls
b GETLN (50 the new line appears on the screen
i 1 ‘ ] . starting at the left).
} ; _ INBUF $0200- 25 — Standard input buffer; array of 256 characters.
‘ INIT $FB2F 42 — Start of monitor; JMP INIT may be used to
bl | terminate a main program.
. ~  IOREST $FF3F 51 all Restores registers A,X,Y, and P (not S), saved
i . . by IOSAVE
i I0SAVE $FF4A 51 AX Saves registers A,X,Y,P, and S in cells $45
ol ‘ through $49.
‘;! KEYIN $FDAB 91 AXY Reads one character into the A register from
|i the keyboard.
i 'l PRBL2 $FO4A 41 X Outputs n blanks with COUT, where n is
3‘ ! entered in the X register (if the X register is
{I entered with zero, n = 256).
“ PRBYTE $FDDA 82 A Outputs the A register as two hexadecimal
I ) digits.
‘}1 PRHEX $FDE3 82 A Outputs the A register (rightmost four bits
“ ‘ ‘ only) as one hexadecimal digit.
‘3 ! PRNTAX $F941 82 A Outputs the A register as two hexadecimal
i/ digits, and then the X register as two hexa-
! 1 decimal digits.
! ‘
i
|

(To call any of the above subroutines, with name and hexadecimal address # as specified, write JSR r
and then somewhere in your program with r EQU 4 to define the subroutine.)

\ In the Exercises.
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Table 11—Continued

Hexa- Section May
decimal of this Overwrite

Name Address Text Registers  Description

PROMPT $0033 74 — Location of prompt character printed by GET-
LN (see above).

RDKEY $FDOC 25 AX)Y Reads one character into the A register (nor-
mally from the keyboard; this assignment can
be changed).

RNDH $004F 99 — Random number (high-order byte); recalcu-
lated every time RDKEY is called.

RNDL $004E 99 — Random number (low-order byte),; recalculated
every time RDKEY is called.

SETINV $FE80 73 Y Set inverse mode for COUT (so that characters
will be displayed black-on-white instead of
white-on-black).

SETNRM $FE84 73 Y Tumns off the inverse mode for COUT (see
SETINV).

SPKR $C030 72 — Speaker location (for giving clicks to produce
musical tones).

STACK $0100 60 — (Hardware) stack; array of 256 characters.

WAIT $FCAS8 70 A Waits (26 + 27k + 5k*)/2 microseconds, where

k is entered in the A register.
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Table 12
Register, Flag, and Memory Capabilities and Flag Settings

T

Section
Number of this
Name Type of Bits Text Instructions Which Use This Capability
A Register 8 6 Move, LDA STA TAX TAY TXA TYA PHA PLA;
Operations, ADC SBC AND ORA EOR; Com-
pare, CMP; Shift, ASL LSR ROL ROR
B Flag 1 67 Set, BRK; Restore, PLP RTI
C Flag 1 15 Clear, CLC; Set, SEC; Test, BCC BCS; Operations,
ADC SBC; Shift, ASL LSR ROL ROR; Compare,
. CMP CPX CPY; Restore, PLP RTI
D Flag ‘ 1 65. Clear, CLD; Set, SED; Operations, ADC SBC;
. . Restore, PLP RTI
I Flag 1 ‘68  Clear, CLI; Set, SEI; Operatxons BRK and inter-
rupts; Restore, PLP RTI
Memory ! 8 6 Operations, INC DEC; Shift, ASL LSR ROL ROR;
bytes o Move, STA STX STY; Using memory, LDA LDX
o . LDY ADC SBC AND ORA EOR BIT
N (See S) ° ,
P Register 8 67 Save, PHP; Restore, PLPRTI (See S, V,D,1,B, Z,
O
PC Register 16 27  Branches, BCC BCS BEQ BNE BPL BMI BVC
) - BVS; Jumps, JMP JSR BRK; Return, RTI RTS
S Flag 1 28  Move, LDALDXLDY TAX TAY TXA TYA TSX
PLA; Operations, ADC SBC AND ORA EOR INC
' INX INY DEC DEX DEY; Compare, CMP CPX
CPY BIT; Test, BPL BMI; Shift, ASL LSR ROL
ROR; Restore, PLP RTI
S Register 8 60 Call, JSR; Return, RTI RTS; Move, PHA PHP PLA
PLP TXS TSX
Stack bytes 8 59 Call, JSR; Move, PHA PHP; Using stack, RTIRTS
PLA PLP
A\ Flag Vi 1 56 Clear, CLV; Test, BVC BVS; Operations, ADC
Y SBC BIT; Restore, PLP RTI
X Register 8 6,13 Move, LDX STX TAX TXA TSX TXS; Opera-

tions, INX DEX; Compare, CPX; Indexing
: ADDR,X ZPAGE,X (ZPAGE,X)
i Y Register 8 6,13 Move, LDY STY TAY TYA; Operations, INY
‘ DEY; Compare, CPY; Indexing ADDR,Y
1 ‘ (ZPAGE),Y; STX ZPAGE,Y
i Z Flag 1 20 Move, LDALDX LDY TAX TAY TXA TYA TSX
i . PLA; Operations, ADC SBC AND ORA EOR INC
‘ INX INY DEC DEX DEY; Compare, CMP CPX
! CPY BIT; Test, BEQ BNE; Shift, ASL LSR ROL
ROR; Restore, PLP RTI

Continued on next page
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Table 12—Continued

FLAG SETTINGS BY INSTRUCTIONS ‘\;:‘

C Additive carry, ADC; subtractive carry (complement of the borrow status), SBC CMP |
CPX CPY; leftmost bit of shifted register, ASL. ROL,; rightmost bit of shifted register, \‘ :
LSR ROR :

S 1 if signed result less than zero; O if signed result greater than or equal to zero* g

\% Arithmetic overflow (see section 56), ADC SBC; second bit from the left of v, BIT v

VA 1 if result equal to zero; O if result unequal to zero

*For BIT v, the “‘result,” in this case, is v itself, not (A and v)
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Table 13
LISA Commands (Editing, Assembling, Saving Files, Etc.)

Y

Command Section of
Name This Text Description of LISA Command

APf 47 Loads (see LOAD) the program whose file name is f and appends it to the
end of the current program in memory.

ASM 46 Assembles the current program. (On error, after noting the error, type C
return to continue, or A refurn to quit.)

BRK 46 Break (goes from LISA to the monitor).

ctrl-D ¢ 92 Executes the DOS command ¢. (Ctrl-D EXEC f loads a file f written by
W finstead of by SAVE f)

Dn 46 Deletes the line with line number #; renumbers the current file in sequence.

Dmn . 46 Deletes the lines with line numbers m, m+1, ..., n; renumbers the
-current file in sequence.

Im ) 46 Inserts the following lines (terminated by control-E return) before line
number m; renumbers the file in sequence.

L 46 Lists (normally, displays on the screen) your entire progr.am.

Lm 46 Lists (normally, displays on the screen) the line with line number .

Lmn ) 46 . Lists (normally, displays on the screen) the lines with line numbers m,

' - mtl, ..., n

LOADf 47 Loads (brings into main memory from disk) the program whose file name

isf.
- Mm 46 Modifies (changes) line m (equivalent to L m followed by D m followed

by Im). .

Mm,n 46 Modifies (changes) lines m, m+1, ..., n (equivalent to L m,n followed
by D m,n followed by I m).

NEW 92, Starts LISA with a new program.

SAVEf 46 Saves (brings out of main memory onto disk) your program and gives it
the file name f.

Wf 92 Like SAVE except that the disk file fis a rext file, so that it can be read by

a BASIC program (see ctrl-D c).

(For the APPLE monitor commands, see Table 14.)
‘ /
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Table 14
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Monitor Commands (For Debugging, Checking

of Overwriting, Etc.)
Section
Comimand Format of of this Description of
Letter Command Text Monitor Command
None xxxx - 47 Displays cell xxxx as two hex-
adecimal digits.
Colon xxxx.hh 48 Puts hh (these two hexadecimal

xxxx:hh h2 (etc.) 48

G xxxxG 47 _
L xxxxL 47
M xxxx<yyyy.zzzzM 45
Period XXXX.YYYY 47
S xxxxS 47

xuxxSSSSS (etc) 47

SSSSS (etc.) 47
T xxxxT 47
v xxxx<yyyy.zzzzV 45

digits) in cell xxxx. ‘

Puts 4k in cell xxxx, h2 in cell
xxxx+ 1, and so on (as many as
desired).

Goes to a program at cell xxxx.

Lists the assembly language and

machine language program (20
instructions) starting at xxxx.
Moves yyyy to xxxx,yyyy+1 to
xxxx + 1, etc.; zzzz is the last byte
moved.

,Displays cells xxxx,xxxx+1,

...,yyyy as two hexadecimal digits
each.

Goes to a program at cell xxxx, but
does (and displays) only a single
step of this program.

Goes to a program at a cell xxxx,
but does (and displays) only as
many steps as there are S’s.
Does (and displays) as many steps
as there are S’s, from where the
APPLE monitor last left off.

Goes to a program at cell xxxx and
displays all its steps (up to a
break).

Compares yyyy with xxxx,
yyyy + 1 with xxxx+1, etc.; zzzz
is the last byte compared.
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| Table 15
‘ Families of Operation Codes on the 6502
FAMILY 00-0 FAMILY 00-0-1 FAMILY 10—REGULAR
B S S i 1 [ i1 11 1
Ll 1 1 1 1 1 ¥ ] ] T 1 T 1
mi 0100 0 m3 1100 m5 a0 10
ml= 0 BRK m3= 4 BITZ a0=0 #n
1 PHP 5 BITQ 1 Z
! -2 BPL 9 IMPL 2 special or A
3 CLC 13 IMP(L) 3 Q
4 JSR . 5 ZXorZY
5 PLP Conventions: 6 special
.6 BMI ml, m2, m3, m4, m5, m6 - 7 QXorQY
; SRI’?*? 1= rznnemonic c.ode 20 values
o PHA al,a addressmg mode code ms=0 ASL 12357
10 BVC 1 ROL | 1,2,3,5,7
11 CLI ' FAMILY 01 2 LSR 12357
12 RTS L L . 3 ROR 1,2,35,7
13 PLA T 1 4 STX 1,3,5
| 14 BVS' m4 al 01 5 LDX 0,1,3,5,7
15 SEI 6 DEC 1,3,5,7
al=0 (Z,X) 7 INC 1,3,5,7
17 DEY 1 Z
| 18 BCC 2 #n
‘ 19 TYA 3 Q FAMILY 10— SPECIAL
. 20 LDY #n 4 DY (a0 = 2 or 6)
{ 21 TAY ¢ 5 2X
w 22 BCS 6 QY -ttt
{ 23 CLV 7 QX m6 1010
i 24 CPY #n
y 25 INY al values m6= 0 ASL
26 BNE m4 =0 ORA All 2 ROL
27 CLD 1 AND Al 4 LSR
28 CPX #n / 2 EOR Al 6 ROR
29 INX 3 ADC Al 8 TXA
30 BEQ 4 STA  Except2 9 TXS
% 31 SED 5 LDA Al 10 TAX
‘ 6 CMP Al 11 TSX
B FAMILY 00-1 7 SBC Al 12 DEX
|i } — L ) 14 NOP
| [ m2 | a0 Joo] - Forthemeaningof
| each instruction
3 20 values above, see Table 3.
m2=0 STY 1,3,5
1 LDY 0,1,3,5,7 For explanations of
2 CPY 0,13 the addressing
! 3 CPX 0,1,3 modes, see Table 8.




ANSWERS TO STARRED EXERCISES

NOTE: Some of the exercises involve writing programs, and, for these, the
answers given are only suggested answers, since programs can clearly be writ-
ten in many ways to do the same thing. For the same reason, no answers at all
are given for the Problems for Computer Solution.

1-1.  (b) FIFTEEN INCHES.

1-2. (a) MEET ME BEHIND THE FENCE.
(¢) WILL YOU GO OUT WITH ME?

2-1. (a) 1100100.
(c) 10000000.

2-2. (b) 140.

2-3. T AM LEARNING ABOUT COMPUTERS.

3-1. (b) 11000.

3-2. (a) 10011.

(c) 11110.

4-1. (a) 64.

(c) 1000.

4-2. (b) 291.

4-3. AFABCAB4DAD.

5-1. (b) D6AA.

5-2. (a) 215.

" (c) 41F.

6-1. (b) No (larger than 256).

6-2. (a) A =1, X =0.(256 in binary is 0000000100000000, and, of these
16 bits, the first eight, or 00000001, would go in the A register;
the others, or 00000000, would go in the X register.)

(¢) A =239, X =16 (decimal).

6-3. 2'2—1 or 4095.

7-1. (b) 00110110.

7-2. (a) —24.

(c) —125.

361
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8-1.

8-2.
8-3.

9-1.

(@)

(Here, as in the next two exercises, we may substitute X, or Y, for A

throughout.)
©

(b) W =50and W2 =50 (or W =

(b) INC F4
(a) K3 =K4-1
() I=8

LDA
STA

LDA
STA

STY

STA

~ (Many other solutions are possible.)

Answers to Starred Exercises

B3

B5

#10
Z

50 and W2 = W)

T TOLOT

C=S8+1 (orC=1J+1)’

080B A9 00
080D 8D DA 08

- . 10-1.

10-3.

12-1.

12-3.

13-1.

z <
w

((or N=M)

(®

ORG

STA
ORG
DF'S
END

09COo
09Cc2
09C5
09C8

0840
0842
0845
0847

$08D0
#$50
C
$08FA
11

A9
8D
8D
8D

A9
8D
A9
8D

00
82
80
81

00
59
64
58

09
09

(or LDA #!80)

09

08

08

LDA
STA

J
T+!6



13-2.

14-1.

14-2.

15-1.

15-2.
15-3.

16-1.

16-3.
17-1.

17-2.

(a)
(©
(a)

(1
@

3)
(a)

©

(b)

(@
()
©
(@)
(b)

(@
(©

Answers to Starred Exercises

Uud) =T(0)
UM) =UM)—-1
(54) (C3)
+(3A) (2F)
(94) (F2)
Add c and fto get i, and note the carry.

363

Add b and e and the carry, if any, to get &, and note the carry from

this operation.

Add a and d and the carry, if any, to get g.

LDA
CLC
ADC
STA

LDX
- LDA
CLC
ADC
STA

W =Ni1+32

LDA
CLC
ADC -
STA
LDA
ADC
STA
LDA
ADC
STA

No, because the answer is positive.
No, because the answer is zero.

- K5

#15
T,X

V1

vz
V3
Vi+!1
Ve+i1
v3+11
Vi+12
v2+12
V3+12

Yes, because the answer is negative.

1, and the carry will be set.

LDA P
CLC
ADC  #!9
IDX L
SEC
SBC R,X
STA  S9

H=TJ)-T(3)

U = 160+TI)—U(D)

or

SEC
ADC
LDX
SBC
STA

#19

R, X
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18-2.
18-3.

18-1.

19-1.

19-2.

20-1.

(a)

©

(b)
(a)

©
(b)

&)
(a)

©

(a)

W =V+1+U

INC V

Answers to Starred Exercises

LDA I

CLC

ADC  J

TAX

ILDA #!5

STA P1,X
LDX J or DX J
LDA N,X LDY N,X
TAX LDA N,Y
IDA N,X STA J
STA J
IDA C © or IDY C
TAY . TYA

- STA UY STA U, Y

This should not be used (and cannot be, under LISA 2.5); it
cqntains 11 characters, which is too many.
This can be used. .

CLC

BCS
STA

T1

T2
ERROR
T3
ERROR
M

#14
ERROR
T,X

NOTE THAT THE FIRST BCS ERROR IS
H STRICTLY NECESSARY. ONE MIGHT THINK
OTHERWISE, BECAUSE IF T1+T2 IS TOO
LARGE, THEN CERTAINLY T1+T2+T3 IS ALSO.
HOWEVER, IF ADDING T2 PRODUCES CARRY,
) ADDING T3 MIGHT NOT (FOR EXAMPLE,
200+100+100) AND ANSWER IS STILL WRONG.

(this instruction is not strictly necessary)

IPA B
CLC

ADC C
CMP D




Answers to Starred Exercises

©

20-2. (b) IFR—1=STHEN 20

20-3. CPX T,Y is not a 6502 instruction; we can compare only the A register,

LDA
SEC
SBC
cMP
BEQ

T+!6
#!3

not X or Y, to a subscripted variable, using an index.

FOR J = 1'TO 100

IF W= V(J) THEN 80

21-1. (b)

NEXT J
21-2. (a)

LOOP

(©)

LOOP
22-1.

LOOP

NON

22-3. The CPY can be eliminated, because DEY sets and clears the zero
status flag under exactly the same conditions that CPY does here.

23-1.

LOOP

#!0

T,X
M ; (or CMP M)
LOOP

K

KP1
#!0
T, X
KP1
LOOP
#!0

T, X
NON

LOOP

K

#!0

N
T-11,X
NON




24-1.
24-2.

25-1.

25-3.

26-1.
26-2.

27-1.

27-3.

28-1.
28-2.

Answers to Starred Exercises

(b) S=TA—J—2)

(@) IDX D
o ILDA T+!1,X

(¢) IDX N

DA T+'10,X

(b) VELMA DYES HER HAIR

(a) CEDS5CDC2C5D2 A0 D4 CF CF A0 C2C9 CT7

(¢} COCCCCC5CTCICCAOCSCFC4CS

(a) The sequence reads ten characters and places them in the array
REV in reverse order (REV contains the last character, and REV
+19 the first).

(c) The sequence reads one character, displays it (from RDKEY), and
also displays the next higher character (““‘B’’ for *“A’’, and so on)
unless the given character was Z, in which case A is displayed.

The LDA #$8D could be done before the start of the loop (right after

the JSR), since $8D is now in the A register at all times in this loop.

(b) KPRIMEBYT "+" (OF KPRIME BYT $AB)

FA (C3 plus 22 plus' 15, since “‘C” = $C3—see Table 9 in the

Appendix—and %10101 = $15.)

0840 A2 FF
0842 BD 00 02
0845 DO 19
0847 CA

0848 DO F8
084A 8D 88 08

FZERO . EQU  $08FO
INBUF EQU  $0200

ORG $08E0
LDX #SFF (or LDX #!255)
y LOOP INX
g CMP INBUF, X
BEQ LOOP
BNE  FZERO

(b) IF U(J) >=U(K) THEN 50

(a) LDA A2
IDX K
cMP T+!1,X
BCS FIFTY




29-1.

29-3.

30-2.

31-1.
31-3.

32-1.

Answers to Starred Exercises

©

DECIDE BCC

Loop

BNE

DECIDE BCC

367

U-1,X LDY U—!1,X

or LDA #12
#12 oMP U-1,Y
U-11,X BCC  FIFTY
FIFTY

P

Q

P+!1
Qt+!1
R+11.
DECIDE
R

LESS

N
P-11,X
Q-11,X
DECIDE

LOOP
LESS

Note that, if X becomes zero, we do not Want to go to LESS, since
P = Q; but then the BNE LOOP will not branch, and neither will the

BCC.

(a) P=4xQ+R
(c) B2=8xBl

INC
BNE
INC
BNE
INC

P

NEXT
P+!1
NEXT
P+12

(next instruction)

The instruction ASL X would refer to a variable called X, not to the X

register.

(@)

T+!110
B
T+!11
B+!1
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ASL ; THIS PROGRAM IS NOT
‘ ' TAX STRICTLY NECESSARY,

SINCE THE CARRY
FLAG IS CLEARED
BY THE ASL (SEE

1

1

| (© LDA K . NOTE THAT THE CLC IN
il S IDA B

ADC T-!6,X

a
)

I STA B THE END OF SECTION
i DA B+!1 31) AND IS NOT

i ADC  T-15,X CHANGED BY TAX

| STA B+!1 5 OR LDA.

|

323, We have to multiply J and K by 3, not by 2, since there are three bytes in a
24-bit quantity. A program for this is:

' _ . A J
! ASL
: . ‘ . ' ADC J
! . TAX
IDA K
) ASL
ADC K
. 4 : . TAY
]‘, : ] ‘ . LDA T,X
, ' CMP T,Y

BNE DECIDE

LDA T+!1,X

L . P T+!1,Y

- BNE DECIDE

. LDA T+!12,X

i ' CMP  T+!2,Y
V! DECIDE BCC LESS

‘ 33-1. (a) T =6+T

H (c) F =13*G

33-3. There is not a corresponding sequence of five instructions. If the SBC
comes firsts it must be preceded by SEC. Note that SEC is not needed
in the given program because the carry flag setting is known after the

¥ BCS.
= 34-1. (b ASL P
X ROL P+!1
ROL. P+!2

34-2. Because the carry flag is only one bit long. In a long sequence (such as
‘ the one given), the total carry might be greater than 1 (in this case, it is
| 2) and you cannot keep such a number in a one-bit flag.
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35-1.

35-3.

36-2.

37-1.

37-3.

The bug is that the last bit to be shifted out is not counted. Note that
ASL sets the zero status flag to the result in the A register; whether the
carry flag is set or not does not matter. We cannot fix this bug by
changing the initialization to LDY #!1 (because, for example, there
might be no one-bits in the A register). The following program works,
however:

LDY #$FF ;  INITIALIZE COUNT TO —1 °

CB1  INY ;  INCREASE THE COUNT
CB2  ASL ;  LOOK AT THE NEXT BIT
BCS CB1 ; IF 1, INCREASE THE COUNT
BNE (B2 ; - IF MORE BITS, LOOK AT NEXT
LDX #!8
LOOP LDA BITS—!1,X
LSR
ROR Q
DEX
BNE  LOOP

The last time through the loop, X is 1 (not zero; the BNE applies to the
value of X after being decreased by 1). Thus LDA BITS,X would be
wrong because this would load BITS+!1 the last time through the
loop, and the first byte of BITS would be skipped. The fundamental
change is that the bits must be rotated into Q from left to right (using
ROR), rather than right to left, because we are going through the BITS
array from the end rather than from the beginning.

The instructions in the loop are INX (2 cycles); STA T,X (5 cycles); -
CPX N (4 cycles); and BNE LOOP (3 cycles, if it branches). The total
of this is 14 cycles, and N times through the loop give 14N—1 cycles
(since the BNE does not branch the last time through the loop). To this
we add the LDX #!0 (2 cycles) and the TXA (2 cycles), giving a total
of 14N+3 cycles. The number of bytes is 2 (LDX #!0) + 1 (TXA) +
1 (INX) + 3 (STAT,X) + 3 (CPX N) + 2 (BNE LOOP—remember
that this contains an 8-bit relative address), for a total of 12.

Yes. For example, computer time on the first computer might be over
one hundred times more expensive than it is on the second. (The stu-
dent may be able to think of other such conditions.)

No; the first of these programs is both faster and shorter than the sec-
ond. Note that the data takes up the same number of bytes, no matter
whether serial or parallel arrays are used. The last six instructions of
the first program use the same amount of both space and time as the
last six instructions of the second program. The above conclusion now
follows from looking at the rest of the two programs.
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38-1. (b) 11
X 1010
00
11
00
11
11110

38-2. (a) 1010 (b)

1111000110

111
111
m

00
- 000
0

39-1. (@ S = P+Q*R-1
. (c) K =J*J*]*]J
39-2. (b)

110

1010 | 1000000

1010
1100
1010

100

LDA
SEC
SBC
LDX
JSR
TXA
LDX
STA

Answers to Starred Exercises

© 1111
1101111001000
1101
11000
1101
10110
1101
10010
1101
101
J
#!5
K
MULT
J
T-'1,X

39-3. (b) The first BCC takes 3 cycles if it branches, and 2 cycles (plus 2
for the CLC and 4 for the ADC, or a total of 8) otherwise. The first
ROR takes 2 cycles; the second ROR takes 6 cycles; the DEX
takes 2_€ycles; and the BNE, if it branches, takes 3 cycles. This
makes a total of from 16 to 21 cycles. Thus the loop takes from
16%8 —1 to 21x8 —1 or from 127 to 167 cycles.

(c) The five instructions at the start of the program take a total of
4+2+4+242 = 14 cycles. The two instructions at the end of the
program take 4+6 = 10 cycles. Adding 24 cycles to the range of
part (b) above gives 151 cycles minimum, 191 cycles maximum.

40-1. (a) S
(© L

I

10=(I-J)/K

Q=D / R+



40-2.

Answers to Starred Exercises

(@) ‘ DA J
CLC
ADC K
TAX
IDA  #!0
LDY L
JSR DIV
STX I

© LDA  #!0
IDX L
DY M
JSR - DIV
LDA #10.
LDY N
JSR DIV
STX W

41-1.

41-2.

41-3.

42-2.

43-1.

43-3.

44-2.

(a) 51;101;201.
(¢) 5;10;20.

(®) DA J . (OR LDA #!200
LDX  #!200 : AND LDX J)
JSR  MULT
JSR  DECOZ

The A register is not loaded. (It should contain zero before the call to
DECOZ.)

There are two ENDs (the first one must be omitted); there is no RTS
after the INX (a subroutine ends with RTS); and I DFS !1 is missing
(or, equivalently, there is no data section).

The LDA is assigned three bytes; it should be assigned two because it
loads a constant. The BNE is assigned three bytes; it should be
assigned two because relative addresses are only one byte long. The
DFS is assigned a byte; it should not be, because we do not know what
isin N.

The machine language at START should be AD 08 09 instead of AD
09 08 (the bytes must be reversed; note that the machine language at
LOOP does have bytes reversed). The BEQ DONE has machine lan-
guage form FO 03 (not FO 05). The problem here is forgetting to add 2;
it is true that 091145 = 0916, but 0911+2+z = 0916 where z = 3.
The bug is that the label LOOP should be on the LDA T —!1,X rather
than the LDX. Without the change, the loop is endless because you are
always jumping back to load X with its starting value. The bug
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45-1.

45-3.

46-1.

Answers to Starred Exercises

becomes apparent, in the walkthrough, the second time that LOOP is
executed, and the table at this point (you could also have a column for
the carry flag) is

A SUM X
& & 4
By 15 &
15 4

Note that 15 occurs twice under A because loading A with T(4), the
second time, produces a ‘‘new value’’—even though this is the same
as its old value at this point.

LDA T runs into the data I; BNE MIX2 can run into the data J (if
I =0). Note that JMP MIX3 does not run into the data at K, since it

‘always jumps around K; and, likewise, RTS does not run into the data

at L. Also, LDA J does not run into any data because COUT EQU
$FDED does not define any data. (Look at the machine language
form, and.you-will see that the next instruction after 0B07, or LDA J,
is OBOA, or JMP MIX3.)

The first time that START is called, the first time that STA is exe-
cuted, X will be 100, or 64 in hexadecimal. Since the array T starts at
the address 0870, the computer adds 0870 and 64, producing 08D4.
However, this is the address of the operation code of LDX #!100. This
does not affect the run the first time START is called, since LDX
#1100 has already been executed. It will affect the run only the second
time that START is called. At this point, LDX #!100 is not executed,
because cells 08D4 and 08DS5 no longer contain A2 64. They contain
E9 64, instead (because the first of these cells has beenoverwritten); and
E9 64 is the machine language code for SBC #!100 (sec Table 4 in the
Appendix). The result is that the computer will do SBC #!100 {(which
affects only-the A register) and then LDA #1233 (which destroys
whatever SBC 3100 did). Therefore, the only effective change is that X
has not been loaded; the subroutine START will set T + !1 through T + !
to 233 where r is whatever was in X before START was called. If this is
greater than 100, the program will overwrite itself with. 233%s, and
proceed to do BNE with a relative address of 233 (which branches 21
bytes backward). This will cause the computer to go back into the array T,
and interpret whatever it finds there as instruction code bytes.

(b) 1 LDA P
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46-2. (a) 11
. DA M
STA N
© M 4
STA T
47-1. 083A- (8 ' INY

A=8D X=32 Y=65 P=30 S=F8

(The most important point above is Y = 65; here 65 is the hexadecimal
value of Y after it has been incremented, with INY.)

47-3. The bug is that the label LOOP1 should be on the ASL, not the DEX.
The steps show that the A register is not changing, as it should (or,
alternatively, that there is no ASL) between the first BCC and the
second.

48-1. (b) oao3:c8 (C8 is the operation code for INY)

48-2. The problem is that of where to continue after the breakpoint at address
xxxx. If you continue at yyyy, the instruction at xxxx is never executed. If
you continue at xxxx, this is simply a BRK instruction, and you get
another break, without executing any more of your program. If you
remove the breakpoint at xxxx and continue from xxxx, your program will
continue correctly, but it will not give a break, the next time around the
loop. ‘

49-1. If the answer is n, then we clearly have x/2" = y, so that 2" = x/y.
The definition given in the exercise now shows us that n = logy(x/y ),
or, equivalently, log, x — log, y. o

49-3. (a) The number of steps taken to reduce a table of size 7 to a table of

size 2 is k, where n/2% = 2, so that k = log, (n/2), just as in exer-
cise 1. This is (log; n) — 1, and then we must add the two final
steps, so that the formula becomes 1 + log, n. If n is not a
power of 2, then log, n is not an integer, and must be interpreted
as the next larger integer (because a fraction of a step cannot be
taken).

(b) Because the loop in this program is executed a small number of
times. (Even for a table of size 1000, there are only 11 steps,
since 2!9 = 1024; and 11 is small enough so that ordinary break-
point debugging may be used.)
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50-2.

.50-3.

S . |

Answers to Starred Exercises

The modified sequence is

IDA P
CLC

! ADC  Q
BCC BETA

JMP  PATCH1
BETA STA Q@

Note that the three bytes of INC Q+!1 have been replaced by the three
bytes of IMP PATCH]. The patch is
PATCH1 INC Q+!1
ENE  PATCH2

INC Qt!'2
PATCH2 JMP  BETA

We use BNE PATCH2 iﬁstead_ of BNE BETA because the patch may
well be more than 126 bytes away from the original sequence of
instructions (see section 27).

The modified sequence is

LDX #10
- LDY #10
GAMMA JMP  PATCH1
BYT 10
BYT 10
GAMMA1 BCC  DELTA
: CLC
ADC #11
DELTA NOP
4 TAY
INX
CPX  #!8
BNE  GAMMA
STY BIN

Note that the one-byte instruction NOP replaces the one-byte instruction
ASL (with therlabel DELTA). The patch is
PATCH1 LDA  BITS—!1,X
LSR
TYA
ASL
JMP GAMMA1

The instruction JMP PATCHI takes three bytes. We cannot use this in
place of TYA(one byte) or LSR and TYA (two bytes, total); we must
use it in place of LDA, LSR, and TYA (five bytes, total). The two
BYT !0 pseudo-operations are there so that five bytes will be replaced
by five bytes (the three of JMP PATCHI, and two more).
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51-1.

51-2.

52-1.

52-2.
52-3.

53-1.

53-2.

54-1.

(b)

(a)

(©)

(a)

(©)

(b)y 70.

FOR J = 0 TO 100

375

POKE 32771, I
POKE 32772,J
CALL 32768

M = PEEK (32772)

POKE 33000+J,T(J)

NEXT J

20 — 00100000
35 — 00110101

(AND) 00100000 — 20

55 — 01010101

AA — 10101010

(AND) 00000000 — 00

LDA L5
ROL
ROL
ROL
ROL

AND #%00000111

or

FOR J =1 TO 100
POKE 32999+J, T (J)
NEXT J'

FOR J =1 TO 101
POKE 32999+J,T (J)
NEXT J

The answer is 20.

The answer is 00.

IDA L5
AND #%11100000
ASL

" ROL

ROL
ROL

The trick is that we have to do ROL four times, not three, because

ROL rotates through the carry flag.

(b)

(a) 3F
(c) 95.

(a)

©

F6 — 11110110
C7 — 11000111

(ORA) 11110111 — F7

20 — 00100000
35 — 00110101
(EOR) 00010101

55 — 01010101
AA — 10101010

15

(EOR) 11111111 — FF

The answer is F7.

The answer is 15.

The answer is FF.
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56-2.

i 54.2.
543,

|

|

55-2.

il . 56-1.

Answers to Starred Exercises

(b) 82.
IDA P
EOR  #%10000000
' STA TEMP
DA Q
EOR  #%10000000
CMP  TEMP
BCS LEQ

The instruction BIT T—!1,X does not exist. (Remember that BIT can-
not be used with indexing.)

(@) Three bytes. The program of section 54 takes 18 bytes, as follows:
INSTRUCTION LbA EOR STA LDA EOR CMP BCC TOTAL

BYTES 372 3 3 2 3 2 18

while the program’of this section takes 15 bytes, as follows:

INSTRUCTION LDA SEC SBC BVS BPL BMI BPL TOTAL

BYTES.. - 3 1 3 2 2 2 2 15

(c) Six cyéles (minimum) or seven cycles (maximum). The program
of section 54 takes 23 cycles if it goes to LESS, as follows:

INSTRUCTION LDA EOR STA LDA EOR CMP BCC TOTAL

CYCLES 4 2 4 4 2 4 3 23

(Notr:e that the BCC branches, in this case, so that it takes 3
cycles.) The first three instructions of the program of this section
take 10 cycles (LDA, 4 cycles; SEC, 2 cycles; SBC, 4 cycles).
There are now two ways to get to LESS. If the BVS branches (3
cycles) to OVSET, where the BPL also branches (3 cycles), this
takes 6 cycles. If the BVS does not branch (2 cycles), and neither
does the following BPL (2 cycles), so that the BMI always
branches (3 cycles), this takes 7 cycles. The total is either 16 or 17

cycles.
(a) IDA P : THE FIFTH AND SIXTH

SEC . . INSTRUCTIONS
SBC Q ;  COULD ALSO BE:
BVC  OVCLR : (1) BPL LESS, BMI GEQ
BMI  GEQ ; (2) BMI GEQ, BVS LESS
BPL LESS ; (3) BPL LESS, BVS GEQ

OVCLR BMI  LESS

GEQ (next instruction)

(b) Space requirements are not affected.
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57-2.

57-3.
58-2.

59-1.

Because each RTS would have to be preceded by instructions to restore
A, X, and Y; and it saves space, in this case, to have only one such
sequence of instructions (followed by RTS) and to jump to this
sequence wherever it is desired to do a return from the subroutine.
Thus we could replace subroutine (a) below by subroutine (b) below:

(@) - ()
SUBR STA  SAVEA SUBR STA  SAVEA
STX  SAVEX STX  SAVEX
STY  SAVEY ) STY SAVEY
(further statements) " (further statements)
; FIRST RETURN : FIRST RETURN
LDA  SAVEA JMP  SUBREX
LDX  SAVEX : NOTE THAT WE SAVE
LDY SAVEY. .; 3 INSTRUCTIONS
RTS . (7 BYIES)
: SECOND RETURN ; SECOND RETURN
LDA  SAVEA JVP  SUBREX
IDX  SAVEX ; HERE WE SAVE 3
LDY  SAVEY ; MORE INSTRUCTIONS
RTS ; (7 MORE BYTES)
. FINAL RETURN ' . FINAL RETURN
LDA  SAVEA SUBREX LDA SAVEA
IDX  SAVEX ILDX  SAVEX
IDY SAVEY LDY SAVEY
RTS RTS

(a) f(Q) is the absolute value of Q.

ASL

TAX

LDA  JTABLE-!2,X
STA IA

LDA  JTABLE—'1,X
STA TA+!1
JMP (IA)

IF X = 0 THEN 799
X =X-1

A =H(X)

The test must be made before the other two instructions. Otherwise,
the statement A = H(X) makes reference to H{—1), which does not
exist, if X is initially equal to O.
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59-3.

60-1.

60-2.
61-1.
61-3.
62-2.

62-3.

63-1.

63-2.

65-1.
65-2.

66-1.

Answers to Starred Exercises

X =X+1 A=H(X)
H(X) =A X =X-1

Pushing A Pulling A

b

(b) The stack pointer now contains F6. (RTS pulls two bytes; and,
each time a byte is pulled, the stack pointer is increased by 1. If it
was F4, it will become F4+2, or F6.)

(a) 2.

() 2.

K=TJd-D+I

Replacing JSR KOUT and RTS by JIMP KOUT.

(a) Two bytes (one return address) must be pulled from the stack
before the RTS is performed.

(a) Because the carry must be clear at this point, or we would have

; branched to DECIB, three instructions earlier. '

(c) Because we must have done the BCC, three instructions earlier;
and we did not branch, so the carry is in fact set.

(b) The carry must be clear; otherwise we take the branch on carry

* set, two instructions earlier.

(a) True. '

(c) False; CPY #N2 does this (CPY N2 compares the Y register with
the contents of the cell whose address is 2).

(a) 129 (because 128+«2—two bytes for the return address—is 256,
and the lowest level plus 128 levels gives 129).

(b) 52«because 51%5—five bytes including two for the return address
and one each for A, X, and Y—is 255. Note that the lowest level
does not store a return address on the stack, while the highest level
does not save A, X, or Y.)

Because a subroutine P at level n can call only subroutines at levels

less than n. If P calls itself, this restriction is clearly violated, since it

calls a subroutine (namely P itself) whose level is not less than 7 (since

it is equal to n).

(b) 53, carry set; ED, carry clear.

(a) 12, carry set; 18, carry set.

(c) 33, carry clear; 93, carry clear.

DX K ; LENGTH OF STRING TO X
TXA ; DIVIDE THIS BY 2, PRODUCING
LSR ;  LENGTH OF PACKED STRING

TAY ;  AND PUT THIS IN Y
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66-3.

67-1.
67-2.

68-1.

CONVP LDA
: ASL
ASL

ASL

ASL

EOR

EOR

STA

DEX

DEX

DEY

LDX
CLC
ADDP LDA
ADC
STA
DEX
BNE

B—12,X

B—!1,X
#$BO
N-!1,Y

CONVP

J
N1-11,X
N2-11,X
N3-11,X

ADDP

379

GET A CHARACTER OF THE STRING
SHIFT IT FOUR BITS TO THE
LEFT, PUTTING ITS RIGHTMOST
FOUR BITS INTO THE LEFTMOST
FOUR BITS OF THE PACKED STRING
NEXT CHARACTER TO RIGHT 4 BITS
(WITHOUT B IN UPPER HALF)
STORE IN ONE CHARACTER OF
PACKED STRING, THEN DECREASE
STRING INDEX BY 2 AND
PACKED STRING INDEX BY 1
IF NONZERO, GET THE NEXT ONE

; MUST ADD' FROM RIGHT TO LEFT
;  WITH CARRY INITIALLY CLEAR
; LOAD A BYTE OF ONE STRING

; AND ADD WITH PREVIOUS CARRY
; TO GET A BYTE OF THE RESULT
; MOVE FROM RIGHT TO LEFT

;- IF NOT DONE, DO ANOTHER ONE

(b) BNE ALPHA (the Z flag is zero if the result was not zero)

(a) CLV
(¢ CLC

The return address is 0834, so this is pushed (the O8 into location
01F3, since the stack pointer contains F3; and the 34 into location
01F2); then the P register is pushed, so 31 goes into location O1F1.
Thus the new contents of the stack are as follows:

ADDRESS

01F0
01F1
01F2
O1F3
O1F4
01F5
01F6
01F7

CONTENTS

A7
31
34
08
B1
3C
08
9E

The S register now contains FO (= F3—3). The P register formerly
contained $31, or binary 00110001; but the I flag (third bit from the
right) is now 1, since the interrupt subroutine call turns the interrupt
system off (I flag = 1). Hence P now contains binary 00110101, or
hexadecimal 35.
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) 68-3. Because the three-byte instruction might be a jump (or JSR) to some
wl other address, in which case that address would become the interrupt
M ‘ return address.

b

| 69-1. - GETLN LDX #!0

i’ IWAIT LDA  INSTAT

1 AND  #%00000001
! ‘BEQ  IWAIT

i LDA  INDATA

STA  $0200,X

LDA INDATA

INX
CMP  #$8D
i BNE  IWAIT
!i ‘ RTS
k)
!g 69-2. IWAIT LDA  INSTAT
; LSR (or ROR)
BCC  IWAILT
|
]

i

f 70-2. 135,204,616 cycles, or slightly over two minutes. The trick is that
15 zero, when decremented by one, produces an answer that is not zero
i ‘ (255, in fact) so a loop count of zero acts as if it were a loop count of
l

!

256. The above number is obtained by substituting 256 for each of L, M,
and N.

i - 71-1.  ICHAR must check if the input queue is empty. If so, it calls POLL
2 and loops back to check again if the queue is empty. Eventually, the
e queue will contain one character (put there by QIN, which is called by
i POLL), at which point ICHAR can proceed. QOUT, in turn, must check
e if the oﬁtput queue is empty. If so, it cannot put a character out, and
simply returns.
| 71-3.  After you have just put an element in Q(REAR), you have to increment
i REAR and check whether REAR = m. In an upside-down queue, you
; ‘ have to decrement REAR and check whether REAR = 0, which is a
1; X little faster. / ,
72-2. We have 1,023,000/512 = 1998 (approximately). Subtracting 7 from
|

this, as before, gives 1991; and dividing this by 10, as before, gives
199, with remainder 1. Subtracting 2 for the LDX, and adding 1 for the
‘ ”; ‘ last BNE, as before, leaves the remainder 0. Therefore we eliminate all
% the instructions at the end of the loop (the BEQ and the two NOPs),
. and LDX #1251 becomes LDX #1215.
b 73-1. (a) BLK "K9"

73-2. (b) sTR "YES"

73-3. HEX 0A5634
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74-1.

75-2.

76-1.

76-3.

77-1.
77-2.

78-1.

(a)

(b)

Five bytes, one each for lines 1, 3, 8, 10, and 13. Note that line
10 is always done eight times, once for each time through the
loop; while line 8 may be done any number of times from zero
through eight, because line 6 might or might not branch. This
makes a total of from 8 to 16 cycles saved. Lines 1, 3, and 13 save
one cycle each, so we have from 11 (minimum) to 19 (maximum)
cycles saved. '
Nine bytes, one each for lines 1, 2, 4, 6, 9, 12, 14, 17, and 18.
Note that line 6 is always done eight times, once for each time
through the loop. If line 8 branches, then we do line 12, and
maybe 14, but not 9; if line 8 does not branch, we do line 9, but
not 12 or 14. In either case we save from 8 to 16 cycles, plus the
eight cycles from line 6; and lines 1, 2, 4, 17, and 18 save one
cycle each. The total is thus from 2} (minimum) to 29 (max-
imum) cycles saved.
EXCH LDA  (0,X)

PHA

DA (2,X)

STA  (0,X)

PLA

STA  (2,X)

RTS

FF. (Since the address at Z and Z +!1, with bytes reversed, is 0809,
we must add FF to this to get 0908.)

Because the final LDA (PTR),Y makes use of the original value of
PTR; but this has been changed by the preceding STA.

(b) TJ+1) =TJ)

The LDY #!0 which was eliminated takes two bytes and two cycles.
The TAY, which takes one byte and two cycles, replaces STA ZP,
which takes two bytes and three cycles (since ZP is in page zero). Thus
a total of three bytes and three cycles is saved.

ILDA #T or LDA #T

CLC CLC

ADC J ADC J

STA ALPHA+!'1 TAY

LDA /T LDA /T

ADC J+!1 ADC J+11

STA ALPHA+!2 STA ALPHA+!2
AILPHA LDA MODIFY ALPHA LDA MODIFY, Y

STA w STA w

(In the second of these programs, MODIFY must have lower half
Zero.)
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78-3.

79-2.

80-1.-

80-2.

- 80-3.

81-1.

81-3.

82-2.

Answers to Starred Exercises

It is clearly both faster and shorter than the scheme it replaces; but it
also uses the Y register, which the original scheme does not.

' ARRAYO STA  ALPHA+!2
STX  ALPHA+!1

LDA #10
ALPHA STA  MODIFY,Y

DEY

BNE  ALPHA

RTS:

(a) Change CMP J to L1 CMP 3#!0; change CMP J+!1 to L2 CMP
#10; define JUPPER by JUPPER EQU L2+!1 and change STA
J+!1 to STA JUPPER; define JLOWER by JLOWER EQU
L1+!1 and change STX J to STX JLOWER.

(b) Four bytes are saved, two for J and one each for CMP J and CMP

- J+!1. Each time the loop is executed, two cycles are saved for CMP
J, and two more for CMP J + !1 if the BNE does not branch This
makes a total of from 200 to 400 cycles.

(a) Change DIV2 to DIV2 CMP #!0
. Change LDX DDATAZ2 to DIV5 LDX #!0
Define DDATA1 by DDATA1 EQU DIV2+!1
Define DDATA?2 by DDATA2 EQU DIV5+!1
It is DECO9, in the output conversion routine DECO. The only
instructions in DECO which refer to DECO9 are STA, INC, and DEC,
none of which has an immediate addressing option.

We have, assumed that the five values of K, from 1 to 5, appear with

equal frequency. If this is not the case—if K =1 more often than

K # 1, for example, when this program section is executed—then the

alternative is considerably faster. One would expect this to happen

quite often in practice; indeed, it is extremely rare that the various pos-
sible values of any variable occur with equal frequency.

(a) It shifts G right by 7—X places.

(c) 28,27, 25,23, 21, 19, 17, or 15 cycles. This includes 12 cycles
for STX, LDA, and STA; 3 cycles for BNE; and 2 cycles for each
LSR. If the BNE does not branch, it takes one cycle less.

Change /SPACE to /SPACE—!1

Change #SPACE to #SPACE—!1

Eliminate ADC #!1

Replace the five instructions starting with LDY #!0 by the following:

LDY LB,X ; GET THE LENGTH OF THIS STRING
CPY NAME ; IF UNEQUAL TO THE LENGTH OF
BNE  PROC ; NAME, STRINGS CANNOT BE =
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83-1.

Change INY to

INC HST2+!1
INC HST3+!1
INC HST4+!1
BNE  HST2

INC HST2+!'2
INC HST3+!2
INC HST4+!'2

where HST? is a label on the ORA instruction; HST3 is a label on the
first STA; and HST4 is a label on the second STA.
PRNTAX JSR  PRBYT
TXA B
JMP  PRBYT
The instruction JMP PRBYT is equivalent to JSR PRBYT followed by
RTS (as suggested near the end of section 61).

Suppose that the test were made for T(J) <T(J+1). Then, if
TJ) = TJ+1), we would interchange them and set the flag. This
would mean that we would do another pass. But the next time through
the loop we would do the same thing, and set the flag again, giving us
an endless loop.

(a) Yes. The minimum value of the two lengths L1 and L2 is the same
as the minimum of L2 and L1.

(b) The problem is that the saved carry flag status tells us whether
L2 < L1 or L2 = L1. Making the suggested change would cause
the carry flag status to record whether L2 < L1 or L2 > L1, and
this is not the same as before. Note that all three decisions are
important here; if L2 <<L1, we must go to EXCH, and otherwise
we must go to GAMMA.

No. It is true that the instruction STX FIRST stores X at FIRST, so that

loading A with FIRST, after this is executed, is equivalent to TXA.

However, we can also reach L3 by the BCS instruction; and, before

this instruction, X is stored in LAST, not in FIRST.

Yes, it can. When LDX FIRST is executed, FIRST and LAST must be

equal; and just before LDX FIRST we have stored X in either FIRST

(STX FIRST) or LAST (STX LAST) without making any subsequent

changes to X.

(a) U=T(8,4)

(a)
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87-3.
88-2.

89-1.-

89-3.

90-1.

91-1.

(b) We should add 10 to the X register.

Answers to Starred Exercises

U+!1

V+11
c2
OVSET
GEQ
LESS

. LESS

GEQ
U

\%
LESS

(next instruction)

LOOP

\ LDA
‘ SEC
SBC
BEQ
BVS
BPL
BMI
OVSET BPL
BMI
c2 LDA
ovp
BCC
GEQ
(a) LDY #!50
LOOP LDA T+!1,Y
STA T,Y or
INY
" CPY #!200
- BNE LOOP

LDY
LDA
STA

#151
T,Y
T-11,Y

INY .

CPY
BNE

#1201
LoopP

© “Two bytes (for the CPY #!1200) and 300 cycles (since the CPY
#1200 is executed 150 times, at 2 cycles each, in the loop of
part (a), and these are all eliminated from the loop).

No. The loop count N is variable, which implies that negative index-

ing is not applicable.

(a 13 bytes (3 for STA, 2 for LDX, 1 for LSR, 3 for EOR, 1 for
DEX, 2 for BNE, and 1 for the data byte B) and 82 cycles (4 for
STA, 2 for LDX, and 76 for the loop, consisting of 11 cycles—2
for LSR, 4 for EOR, 2 for DEX, and 3 for BNE—done 7 times,
with one fewer cycle the last time, since the BNE does not

branch).
(b)

In the (k4 1)st bit from the left in the A register, the kth time

through the loop. Thus, the first time through, the partial result is
kept.in the second bit from the left; the second time through, it is
kept in the third bit from the left; and so on.

ADDRESS OF MESSAGE IN A AND

DOSCOM STA  ZP+!1 ;
STX ZP
IDY  #SFF
SLOOP - INY
"% DA (ZP),Y
CMP #CRET
BEQ DONE
JSR  COUT
JMP  LOOP
DONE JMP  COUT

X —— STORE IN ZP AND ZP+!1
STARTINIG VALUE OF Y IS -1
MOVE TO NEXT CHAR. OF MESSAGE
GET THIS CHARACTER

OUTPUT IT AND QUIT

; OTHERWISE, OUTPUT IT AND GET

NEXT CHARACTER OF MESSAGE

; IF THIS IS A CARRIAGE RETURN,

(SAME AS -JSR COUT- AND -RTS-)
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91-2. DOSCOM STA LOOP1+!2 ; ADDRESS OF MESSAGE IN A AND
STX LOOP1+!1 ; X — -~ MODIFY ADDRESS OF LOOP1
1LDX  #$FF . STARTING VALUE OF X IS -1

LOOP INX . MOVE TO NEXT CHAR. OF MESSAGE

LOOP1 LDA MODIFY,X ; GET THIS CHARACTER

CMP #CRET IF THIS IS A CARRIAGE RETURN,

BEQ DONE OUTPUT IT AND QUIT

JSR  CoOUT OTHERWISE, OUTPUT IT AND GET
- JMP  LOOP NEXT CHARACTER OF MESSAGE

DONE JMP  COUT (SAME AS -JSR COUT- AND -RTS-)

92-1. Because LOAD f loads binary files, rather than text files. (This is clear
because SAVE f saves a binary file, as we have noted.)

92—3 . 1LDA Pl
STA P2
NLS
LDA P5
- STA 'P6
BRK
END

93-1. p = a+5=N—P).

93-3. (a) ItshouldaddS5.

94-2. No, because the statement might be A = B*C1 (for example).

95-1. Yes. As noted in section 86, searching this table (a very common
operation in an assembler, as we have noted) is much faster if the table
is sorted.

95-3. Yes, if you also have an assembler to translate the resulting assembly
language programs into machine language. You will then have a sys-
tem which does the job of a compiler (which, as noted in the text, is in
fact an alternative to the use of an interpreter) in a two-step process.

96-1. (a) IF C THEN GO TO mi;
S; GO TO m;
m: Q1;
IF NOT D THEN GO TO M;
n:
96-2. (a) IF C1 THEN S1 ELSE WHILE C2 DO S2
96-3. (a) MP L4
L3 LDA K (this instruction may be omitted)
: CLC T e :
; ’ ADC  #!5 G ,
STA K o 1
L4 DA K
o L i

BCC L3

j

|
1

B

|
|
|




4 97-1.
97-2.

98-1.

i 98-2.
i 98-3.

99-2.

100-1.

100-3.

Answers to Starred Exercises

b ¥

(a) 00:110011

(c) ' 11.001001

(a) 40600000

(c) 5D200000

(b) 101

1F000400; the normalized form is 1C400000.

The product of the hexadecimal fractions .2 and .3 is .06; the sum of
the unbiased exponents, 1 and 1, is 2, corresponding to the biased
exponent 42. The unnormalized result is thus 42060000, which
becomes 41600000 when normalized. This may be checked by noting
that (41200000)(41300000) = (41600000) corresponds to the decimal

'(or hexadecimal) multiplication 2%3 = 6.

No, because the type of every variable is fixed for a particular run of a

“program (since there is clearly no way for a variable to change its

name while a program is running).
If TI = TK = 0, then add J and K as 8-bit quantities and store the
result in J..If TY = TK = 1, then add J and K as 16-bit quantities and
store the result in J and J+!1."If TI =1 but TK = 0, add the 16-bit
quantity J to the 8-bit quantity K (see section 19) and store the result in
J and J+!1. The most difficult case is that in which TJ =0 but
TK = 1. Again an 8-bit-and a 16-bit quantity must be added, but, this
time, the result must go back in the 8-bit quantity J. There are two
acceptable ways to treat this problem. One can go to an error exit if the
result does not fit into 8 bits (as we did with division); or we can store
only the rightmost 8 bits of the result (as the 6502 does with addition
and subtraction). What is not acceptable is to treat the result as a 16-bit
quantity, because then we would have to have TJ = I (denoting a 16-
bit quantity J); but the conditions of the problem state that the opera-
tion of addition does not change the type of J.




BIBLIOGRAPHY

If you are interested in learning more about the assembly languages of various
computers, you might read the following:

Birnbaum, I., Assembly Language Programming for the BBC Microcomputer,
Macmillan, London, 1982. ‘

Camp, R. C., Smay, T. A., and Triska, C. J., Microcomputer Systems Principles
Featuring the 6502/KIM, Matrix Publishers, Portland, Ore., 1978.

Cohn, D. L., and Melsa, J. L., A Step By Step Introduction To 8080 Micro-
processor Systems, Dilithium Press, Portland, Ore., 1977.

Daley, H. O., Fundamentals of Microprocessors, Holt, Rinehart, and Winston,
New York, 1983. ) ,

Dow, J. T., and Dow, D. B., TI Home Computer Assembly Language Primer, John
T. Dow, Pittsburgh, Pa. 15217, 1984.

Findley, R., 6502 Software Gourmet Guide and Cookbook, Scelbi Publications,
Elmwood, Conn., 1979.

French, D., Inside the Commodore 64, French Silk, P.O. Box 207, Cannon Falls,
Minn. 55009, 1983.

Inman, D., and Inman, K., The ATARI Assembler, Reston Publishing Co., Reston,
Va, 1981. '

Kane, G., Hawkins, D., and Leventhal, L., 68000 Assembly Language Program-
ming, Osborne/McGraw-Hill, Berkeley, Calif., 1981.

Kudlick, M. D., Assembly Language Programming for the IBM Systems 360 and
370, Wm. C. Brown Co., Dubuque, Iowa, 1980.

Lemone, K. A., and Kaliski, M. E., Assembly Language Programming For The
VAX-11, Little, Brown & Co., Boston, 1983.

Leventhal, L., 6502 Assembly Language Programming, Osborne/McGraw-Hill,
Berkeley, Calif., 1979.

Leventhal, L., 6809 Assembly Language Programming, Osborne/McGraw-Hill,
Berkeley, Calif., 1981.

Leventhal, L., 8080A/8085 Assembly Language Programming, Osborne,
Berkeley, Calif., 1978.

Leventhal, L., and Saville, W., 6502 Assembly Language Subroutines, Osborne/
McGraw-Hill, Berkeley, Calif., 1982.

Mansfield, R., Machine Language for Beginners, Compute! Publications, Inc.,

Greensboro, N.C., 1983.
Mateosian, R., Programming the Z8000, Sybex, Berkeley, Calif., 1980.

387




Morse, S. P., The 8086 Primer, Hayden Book Co., Rochelle Park, New Jersey,
1978. '

Mottola, R., Assembly Language Programming for the APPLE II, Osborne/
McGraw-Hill, Berkeley, Calif., 1982.

E
j 388 Bibliography
&
J Osborne, A., An Introduction To Microcomputers, Osborne, Berkeley, Calif.,
]

1976.
Rector, R., and Alexy, G., The 8086 Book, Osborne/McGraw-Hill, Berkeley,
Calif., 1980.

i Rooney, V. M., and Ismail, A. R., Microprocessors and Microcomputers, Mac-
‘ millan, New York, 1984.

y Santore, R., 8080 Machine Language Programming for Beginners, Dilithium
' Press, Portland, Ore., 1978.

il Scanlon, L., IBM PC Assembly Language, Robert J. Brady Co., Bowie, Md.,
h 1983.

\‘ ‘ Spracklen, K., Z-80 and 8080 Assembly Language Programming, Hayden Book
' Co., Rochelle Park, New jersey, 1979.

B Struble, G. W., Assembler Language Programming: The IBM System/360 and
Ii ‘ 370, Addiéon/Wesley, Reading, Mass., 1975.
{
|
|
|
|

Titus, C. A., Rony; P.; Larsen, D. G., and Titus, J. A., 8080/8085 Sqftware

I Design, Howard W. Sams & Co., Indianapolis, 1978.

‘ Wakerly, 1. B, Microcomputer Architecture and Programming, John Wiley &

| Sons, New York, 1981.

| i Wagner, T. J., and Lipovski, G. J., Fundamentals of Microcomputer Program-
ming, Macmillan, New York, 1984.

Weller, W. J., Shatzel, A. V., and Nice, H. Y., Practical Microcomputer Pro-
, gramming: The Intel 8080, Northern Technology Books, 1976.

};‘ Zaks, R., Programming the 6502, Sybex, Berkeley, Calif., 1978.

‘ Zaks, R., 6502 Applications Book, Sybex, Berkeley, Calif., 1979.

! Zaks, R., 6502 Games, Sybex, Berkeley, Catlif., 1980.




INDEX

A register, 17, 24, 41, 47, 51-52, 63, 67,
70, 88, 94, 101-102, 107, 110-111,
123, 125, 134, 159, 179, 186, 223,
227, 281

A-440 (musical note), 243

Accumulator, 47

Actual parameter, 266

ADC (Add With Carry), 48, 49, 70, 188,
223

Adding, 47-50

a bit (tape), 302

constants, 49

8-bit to 16-bit numbers, 61, 297
floating point numbers, 333

in base 256, 44

in binary, 8

in hexadecimal, 15

signed numbers, 188, 296
16-bit numbers, 47, 296

Adding 1 (incrementing), 28

Adding 2, 29

Addition, and type codes, 336

the same (signed and unsigned), 22,
296
used in multiplication, 126~7

Address expressions, 37-38, 40, 68, 78,
300

Address modification, 263-268

Address table, 287, 288

Addresses, 17, 31, 35, 37, 41, 88, 89,
105, 140, 142-143, 159, 202, 215,
319

calculation of, in branch instructions,
89

8-bit, 140, 143, 250

indirect, 196, 253-258

of instructions, 35

of multibyte quantities, 37, 40

relative, 89, 143, 273-275

return, 195, 202, 218-220

16-bit, 17, 31
starting, 152, 173 ,
Addressing modes, 42, 177, 183
table, 351
ADR, 215
Aiken, 33 .
Alignment, out of, 100, 151
Alphabetizing, 286288
AND (logical “and™), 176-178, 185, 254
AP (“append,” LISA command), 160,
311
APL, 336
Apollo spacecraft, and patching, 169
Append (LISA command), 160
APPLE, v-viii
APPLE DOS, 306
APPLE Ilc, v
APPLE Ile, v, 77
Approximations, floating point, 333
Arithmetic shift, 102, 111
Array, 40
‘circular, 241
limitation on the size of, 42, 259
long, 42, 259-265, 276278
names of, 61
names of, as subroutine parameters,
256, 267
of hexadecimal digits, 279-282
of strings, 276-278
of two-byte quantities, 104
parallel, 104
serial, 104
sorted, 283-291
two-dimensional, 292-295
ASC (pseudo-operation), 85, 138, 247
Ascending order, 283
ASCII, 78
ASL, 101, 104-105
ASM (LISA command), 155
Assembler, v, 34, 319
cross, 314
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Assembling, 155
Assembly, by hand, 140
Assembly language ' v—viii, 1, 31, 32, 34,
35, 38, 42, 151, 158, 198, 263,
319-320, 344-347
Assembly-level patching, 168171
Assignment statements in BASIC,
K, 24
L+1, 28
K+1, 29
T(6), 40
J+K, 48
I+J+K, 48
J-K, 55
-1, 55
= M1*M2, 125
= MI/M2, 129
Asterisk (current location), 99, 273 -
Atanasoff, 33
ATARI, v, 233
Audio tape player,'analogy, 20
Auxiliary memory, 18.- -
Available stack space, 207
Average, trick for calculating, 289-290

I

ZZr R R
o

W W

B (break) flag, 227

Backspace key, 78, 155, 156

Base of a number, 9

Base of a number system, 12

BASIC, v-viii, 1, 60, 63, 154, 172, 198,
273, 283, 292,1306, 316-317, 320,
335, 340

BASIC programs, calling LISA pro-
grams, 172

Baud, 236

BCC, 60, 61, 89, 93

BCD numbers, 222-226

BCS, 60, 61, 93, 131 ./

Beep (on speaker), 244

BELL1, 244

BEQ, 63, 64

BFL, 284

BGE, 94

Biased exponent (floating point), 330

Binary-coded decimal (BCD), 222-226

Binary coding principle, 17

Binary files, 306

“Binary form” (internal form), 134

Binary fractions, 326-328

figure, 328

Index

Binary multiplication and division, 122
Binary numbers, 3-7
adding, 8-11
dividing, 122
multiplying, 122
subtracting, 8-11
table, 5
very large (and hexadecimal numbers),
13
Binary -point, 326-327, 333
Binary save (BSAVE), 173
Binary search, 165-166, 289
example, 291
Binary system, 44
Binary-to-decimal conversion, 5
Binary-to-hexadecimal conversion, 13
table, 14
BIT (6502 instruction), 185, 190, 194
Bit (definition), 5
Bit-by-bit instruction,- 176-179
Bit processing, 113-115
Bit testing (BIT instruction), 185
Bits, parity, 302

. Blank character, 77

Blanks, 35
Blinking mode (characters), 77, 247
BLK, 247
BLOAD, 173, 306
Block (written on tape), 302-303
BLT, 94
BMI, 92
BNE, 63, 64, 71
Borrow, 9, 15, 45, 51-53, 54, 63, 108,
223
relation with carry, 51-53
Borrow status, 51
“Boxes” (registers and cells), 17
BPL, 92
Branch address, 89
Branch on
carry clear (BCC), 60
carry set (BCS), 60
equal (BEQ), 63
false (BFL), 284
greater than or equal (BGE), 94
less than (BLT), 94
minus (BMI), 92
not equal (BNE), 63
overflow clear (BVC), 188
overflow set (BVS), 188
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plus (BPL), 92
true (BTR), 284
Branches, 60-62
and jumps, 64, 89
conditional, 140
limits of, 90
timing of, 117
Break flag, 227
Breakpoint debugging, 162-164
Breakpoints, 162-166
“Bring down” (during addition), 8, 15,
44
BRK (LISA command), 158
BRK (6502 instruction), 137, 138, 150,
162
BSAVE, 173, 306
BTR, 284
Buffer, 81
- ring, 241
standard input, 81, 86, 134, 163
Bugs, 83, 99, 146, 158-171
“Bumping,” 108
BVC, 188, 190
BVS, 188, 190
BYT, 85, 138, 214-216
and EQU, 215
Byte, high-order and low-order, 97
Bytes, 17, 18, 45
number of, in an instruction, 117
reversed, 31, 142, 196, 202, 226, 230,
266

C (carry) flag, in status register, 227
C (programming language), vi
Cafeteria well, 200
Calculators, and BCD numbers, 226
‘Call instruction, 196
in BASIC, 173
Calling LISA programs from BASIC, 172
Calling program, 195 '
Calling sequence, 254
Carriage return, 78, 86
Carry, 8, 15, 44, 45, 47, 96, 108, 114,
212
and borrow, relation between, 51-53
and overflow, 188
set to indicate error, 129, 212
Carry in (into a bit), 189
Carry out (of a bit), 189

391

Carry status flag, 47, 52, 54, 60, 94, 102,
127, 131, 188, 223, 280, 288
table, 342-343
CASE, 323
CDC 6000 series of computers, 196, 218
Cell number (address), 17
Cells, 17
more than one for each number, 20
names of, 18
Changing bits (exclusive OR), 182
Changing lines (in LISA), 154
Changing memory, in the monitor, 162
Changing registers and memory, 25, 29,

Character codes, 77-80, 107-108
tables, 351-353
Character strings, 78, 85, 276, 286-288
Characters, 77-80
in a label, 60
Checking, desk, 145
Chief programmer, 324
Children’s game, 1-2
Circular array, 241
CLC, 47, 48, 102, 107, 108, 189, 212
CLD, 222-223
Clear carry (CLC), 47
Clear decimal mode (CLD), 222
Clear interrupt flag (CLI), 231
Clear keyboard strobe, 234
Clear overflow flag, 189
Clearing, 47
by masking, 177
CLlI, 231
Clicks (on speaker), 243
“Clobbered” (overwritten), 150
CLOSE (DOS command), 307, 311
Closing a file, 307
CLV, 189
CMP, 63, 223
CMX, CMY (no such instructions; see
CPX and CPY)
Code, 1
binary numbers as a, 4
character, 77, 108, (tables) 352-353
instruction, 31
number, 2
object, 172
operation, 31, 38, 151
source, 172
Code for sign, 20

i
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Codes for addressing modes, 177
Coding principle, binary, 17
Colon, after label by itself, 274
Colon, in monitor command, 162
Column 1, 61
Column representation of a double array,
292

Comma, in indexed instructions, 41-42
Commands in APPLE monitor, table, 359
Commands in LISA, table, 358
Comments, 57-58, 87, 126, 129-130
Conipare instructions and overflow, 189
Comparisons, 63

signed, 182-183, 189, 297

timing (between programs), 117

two-byte, 96-97

unsigned, 93, 96-97
Comparisons-in decimal mode, 223
Comparisons with constants, 64
Compilers, vi, 317, 320
Complement, 21 '

ones’, 21, 99, 183, 200

tens’, 223 . .

two-byte, 98-99 ’

twos’, 21, 89, 99, 180, 183
Complete programs, 137-139
Computed GO TO (FORTRAN), 273
Conditional branch, 64, 140
Conditions, and branching, 60
Confusion concerning address expres-

sions, 38-39 f

Constant characters, 78
Constant declarations, 85, 142

required for every variable, 86
Constant instruction codes, 150
Constant subscripts, 40, 67-68

in long arrays, 260
Constants, adding, 49 A

additive or subtractive, in subscripts, 74

BCD, 222

comparing to, 64

loading, 25, 57

subtracting, 55
Constructing a byte from eight bits, 114
Contents of a cell, 32, 35 '
Control characters, 77

tables, 351-352
Control-D, 173, 310-311
Control-E, 154, 311
Control-H, 78

Index

Control-J, K, L, 155
Control-M, 78
Control mode (characters), 77
Control-O, 155
Control-reset, 163
Control-X, 155
Conversion, between 8-bit and 16-bit
signed numbers, 297
between packed and unpacked strings,
225-226
from binary to decimal, 5
from binary to hexadecimal, 13, (table)
14
from decimal to binary, 4
from decimal to hexadecimal, 12-13,
(table) 341
from hexadecimal to binary, 13, (table)
14 o
from hexadecimal to decimal, 12,
(table) 341
input-output, 107-108, 133-136,
210-216
to binary (input), 134
Counter, program, 88
Counting bits, 113-115, 185
COUT, 81, 89, 113-114, 125, 133, 134,
162, 166, 179, 233, 237, 247, 251,
307 :
COUTI1, 307-308
CP/M, vii
CPX, 63, 67, 223
CPY, 63, 223
Criteria for space-time tradeoff decisions,
119
Cross-assembler, 314
CROUT, 83, 215
CTRL (control), 77
Current location (*), 99, 273
Cursor, in LISA, 155
Cycles, 88, 116-120, 236, 250
" table, 314-315
Cycles per second, number of, 117

D (decimal niode flag), in status register,
227

D (delete command in LISA), 154

.DA (in LISA 2.5), 215

Data, immediate, 31

Data passed between LISA and BASIC,
174



Index

Data section, 35, 67, 71, 127, 138, 150
DBY (LISA 2.5), 215
DCI, 248
DCM, 311
Debugging, 158-167, 228
DEC (decrement instruction), 28, 70-71,
99
DECI, 134, 171, 193, 210-213
Decimal fractions, 326
Decimal mode, 222-226
Decimal mode flag, 222-227
Decimal numbers, 4
Decimal point, 326
Decimal system, 4, 44
Decirhal-to-binary conversion, 4
example, 6
Decimal-to-hexadecimal conversion,
12-13
table, 341
Declarations, 138
constant, 85, 142 .
. string, 85-87, 247-249
DECO, 134, 171, 193, 214-217
DECOZ, 134, 193, 214-215
Decrementing, 28-29, 223
and BNE, 71
and carry status, 52
and overflow, 189
two-byte, 98-99
Decrementing an index in a long array,
259
Define characters immediate (DCI), 248
Define storage (DFS), 34
Delete command (in LISA), 154
DELETE (in APPLE DOS), 306
Design, top-down, 323
Desk checking, 145
Destroyed byte, 150
Destroyed register, 193
DEX, 28, 70, 71
DEY, 28, 70, 71
DFS, 34-35, 37, 40, 85, 138 142, 292
Diagnostic instructions, 167
Digits, character codes for, 77-78,
108-109
Dijkstra, E. W., 322-323
Direct addressing, 253
Disabling the interrupt system, 231
Disadvantages of instruction modifica-
tion, 264
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Disadvantages of negative indexing, 300

Disassembler, 320

Disk operating system (DOS), 306-309

Diskette, as auxiliary memory, 18

Displays, seven-segment, 244245
stepping, 158-161

DIV (subroutine), 129-132, 193, 230,

266

Dividing by two, 101, 224, 280, 289-290
signed, 111

. 16-bit, 111

Dividing by ten, 116, 119-120, 223

Dividing floating point numbers, 332

Dividing in output conversion, 214

Division, binary, 122

Division by zero, 123, 129-130

Division subroutine, 129-132

Dollar sign, 25

DOS (Disk Operating System), 306

Double error detection, 304

Double quotes, 78, 86-87

Double shift, 110, 111

Droppirig a bit (tape), 302

Dummy address, in address modification,

264
Dump, 159

Echo program, 82

Eckert and Mauchly, 33

Editors, 310

Effect, side, 29

Eight-bit addition, 48

Eight-bit addresses, 140, 143, 250

Eight-bit registers, 17

Eight-bit subtraction, 54-55

Eight characters, maximum label length,
LISA 2.5, 60

Eight queens, 337-338

Empty queue, 242

Empty stack, 200, 208

Emulator, 314

Emulator mode (APPLE III), v

Enabling the interrupt system, 231

END (in LISA), 34, 139

Endless loop, and reset key, 231

Endless loop in LISA, 271

Entered with (subroutine), 125

EOR, 182-183

EPZ, 251, 333
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EQU, 81, 86, 138, 251, 269, 271
and BYT, 215
Equal, branch on, 63
Equate to page zero (EPZ), 251
Equivalent programs, 59
Error case; in division, 129-130
Error conditions, 61
Errors, 83, 99, 145, 146, 158-171
in tape input-output, 302
intermixing, 150
overwriting, 150-151, 251
starting address, 152
typing, 155-156
Even numbers, in binary, 11
Even parity, 113, 303
“Everything pushed must be pulled,”
207, 210, 215
Exchanging (interchanging), 26
Exclamation point (!), 25, 36
Exclusive OR, 182, 189, 296, 303
EXEC (APPLE DOS command), 310
Execute a program, to, 34 .
Exits with (subroutine),- 125, 193
Expotient, in a floating point number, 329
Expressions, address, 37-38, 40
Extended mnemonics, table, 348-349
External form, of integers, 133

“Falling through,” 71

False (value of logical flag), 284

Families of operationscodes, 177-178
table, 360

Fetch, instruction, 88

$FF (left half of negative 16-bit number),

37

Field of a byte, 177, 178, 183

FIFO (first in, first out);, 239

File name, 155 i

Files, binary, 306

Files, text, 307, 310-312

“First in, first out” (FIFO), 239

Fixed point, 327

Flag, break, 227
carry status, 47, 52, 54, 60, 102, 127,

131, 188, 223, 280, 288
decimal mode, 222-226, 227
interrupt status, 231
logical, 284
negative (sign) status, 207
overflow status, 188-191, 223, 228
sign status, 92, 103, 112, 178, 180,
186, 223

Index

zero status, 64, 66, 70-72, 103, 112,
176, 180, 185, 186, 223, 300
Flag settings of 6502 instructions, table,
342-343
Flags, status, 94
table, 356
Flashing mode, 247
Floating point, 329-336
operations, 332-334
FOR statement, in BASIC, 66, 340
Formal parameter, 266
FORTRAN, v-vii, 1, 254, 273, 292, 316,
320, 335, 340
Forward reference (EQU), 271
Fraction, in a floating point number, 329
Fractions, 326-328

 Full stack (stack overflow), 201, 208

G (monitor command), 158, 162
Game, children’s, 1-2 ’
“Garbage,” 145

General comparisons, 92
GETLN, 81, 193, 235, 251, 307

‘GETLN1, 251

GETLNZ, 81, 82, 84, 133, 166, 171,
193, 233, 272, 305, 307
problem with breakpoint debugging,
163
GIGO, 239
Goldstine and von Neumann, 33
GO TO (in BASIC), 64, 340
“Go to” (monitor command), 158
Greater than, test for, 93, 97
Greater than or equal, test for, 93, 96

Half, left and right (upper and lower), 37
Half, upper and lower, 54
Half a byte, 279
Hand assembly, 140-144
Handshaking, 235
Hard copy (LISA output), 155, 159
Hardware stack, 202

advantages of, 218, (figure) 219
HBY, 215
HEX, 248-249
Hexadecimal digits, arrays of, 279-282
Hexadecimal fractions, 326-328
Hexadecimal instruction codes, 31
Hexadecimal numbers, 12, 75

adding, 15

and variable names, 16
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multiplying and dividing, 124
subtracting, 15-16
Hexadecimal system, 12, 44
Hexadecimal-to-binary conversion, 13,
(table) 14
Hexadecimal-to-decimal conversion, 12,
(table) 341
High-order byte, 97, 215
HIMEM (in BASIC), 173
Horizontal parity bits, 302-303

I (insert command), 154, 311
I (interrupt status flag), 227, 231
IBM, 12, 18, 227, 311, 329
IBM 360 and 370, 196
IBM 4300 series, 196, 207, 218, 329, 332
IF statements (BASIC), 60, 63, 340
IF-THEN-ELSE, 323
Immediate data, 31, 140, 142
Improving programs, 59
In-place sort, 283 .-
INBUF, 81, 82, 134
INC (increment), 28, 70, 98
Inclusive OR, 182
Increment, 28, 189, 223
an index in a long array, 259
and carry status, 52
two-byte, 98
Index, 41
out of range, 151
Index formulas, for two-dimensional
arrays, 292
Index registers, 41, 47
Indexed instructions, 41
timing of, 117
Indexing, in long arrays, 259
in page zero, 252, 255
negative, 299-301
Indirect addressing, 196, 250, 253-258
without indexing, 257
Indirect jump, 195
Inequality tests, 92
INIT, 137
Initializing variables, 145
Input, 81-84, 233-235, 302-304
Input, processing, and output, simul-
taneous, 239
Input buffer, standard, 81, 86, 134, 163
Input conversion, 133-136
program, 210-213
Input instructions, 233-235

|
Input queue, 239
Insert command, in LISA, 154 \
Inserting characters in a line, 156
Instruction code, 31 )
Instruction cycle, 88 “
Instruction fetch, 88 ‘
Instruction modification, 263-275 ‘
Instruction timing, table, 344—345
Instructions, 24, 31 l
\

diagnostic, 167

immediate data, 31

indexed, 41

indirectly addressed, 195, 253-258

transfer, 57-59

zero-page, 250-252
Interactive program, 138
Interchanging, 26
Intermediate language, 317
Intermixing errors, 150
Internal form, of integers, 133
Internal registers, 88
Interpreters, vi, 316-318, 320
Interrupt priorities, 231
Interrupt routine, 230
Interrupt status flag, 231
Interrupts, 230-232, 241

- and ready status, 235, 237

return from (RTI), 231
INV (pseudo-operation), 247
Inverse mode (characters), 77, 247
INX, 28, 70
INY, 28, 70
IOREST, 172
IOSAVE, 172
IR (instruction register), 88
IRQ interrupt, 230-231

branch, 60

JMP, 64, 88, 89, 99, 173, 253

JSR, 81, 89, 125, 195, 196, 202, 207
followed by RTS (replaced by JMP),

208

Jumps, 64
and branches, 89
indirect, 195, 253 )

Jump to subroutine (JSR), 81

K (as in 64K, etc.), 18
Keyboard input, 81-83, 233-235
Keyboard strobe, 234

KEYIN, 307-308
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Keywords, 316
Kilobyte, 18

)

L (list command), 155
L (monitor command), 159
Label, 60-62, 93-94, 97, 320
by itself (with colon), 274
local, 94, 100
statement, 60
Language, algebraic, v
assembly, v—viii, 1, 32, 34, 35, 38, 42,
151, 158, 198, 263, 319-320,
344-347
intermediate, 317
machine, v-viii, 1, 31, 32, 34, 35, 38,
42,100, 151, 158, 263, 319-320,
344347
Large numbeérs (greater than 255), 20
Last in, first out (LIFQO), 239
LCD, 245
LDA, 24, 70
LDX, 24, 70
LDY, 24, 70 - .
Leading zeros, 9, 37, 89, 215-216
Least significant byte (or digit), 96
LED, 244
Left arrow (<), 155
Left half, 37, 196
Left shift, 101
Left-to-right bit processing, 113
Leftmost bit zero (chéracters), 78-79, 87
Length of an array, upper limit, 42
Length of a list, 257
Length of aprogram(in the monitor), 172
Length of a string, 248, 276, 286--288
Less than, test for, 92-93, 96
Less than or equal, test for/ 93, 97
Letters (characters), 77 -
Levels of subroutines, 203, 218-221
Leventhal, L., viii, 1, 233
LIFO, 239
Light-emitting diode, 244
Limits on branching, 90
Line numbers, 60, 154
Liquid-crystal display (LCD), 245
LISA, v, 78, 154-158, 172, 184, 251,
284, 300, 306, 319, 349, 358
getting back to (from the monitor),
159-160, 168
LISA assembler, 34

Index

LISA computer (unrelated to APPLE II or
to LISA assembler), v

LISA 1.5, v, 36, 37, 60, 61, 75, 142

LISA programs, called from BASIC pro-
grams, 172

LISA 2.5, v, 36, 37, 60, 61, 75, 94, 100,
142, 215

LISP, 22, 336

List, simple, 257

List node, 256

List processing, 256~257

Listings (LISA), 155, 311

Listings (monitor), 159

LOAD (LISA command), 160

Loading, 24, 38

and carry status, 52

_ Loading a program, 160, 173

Loading a register, 24

Loading the stack pointer, 203204
Local labels (LISA), 94, 100.

Location of current instruction (*), 99
Locations, temporary, 107, 139, 208, 251
Logarithms (base 2), 166, 290

Logical AND, 176-178

Logical exclusive OR, 182, 296, 303
Logical flag, 284

Logical OR, 179-181

- Logical shift, 102

Long arrays, 42, 259-265, 276-278
Lookup, table, 116, 294
Loops, 66-76

endless, and reset key, 231

from back to front, 71

in BASIC, 66-67

nested, 237

timing calculations in, 117, 118

wait, 236-237, 243-244
Low-order byte, 97

Lower case mode (characters), 77

Lower half, 37, 47, 105, 110-111
LSB (least significant byte), 96
LSR, 101

LST (pseudo-operation), 311

M (modify command), 154
Machine language, v-viii, 1, 31, 32, 34,
35, 38, 42, 100, 151, 158, 263,
319-320, 344-347
Main memory, 17
simulated, 313




r

Index

Main program, on the APPLE, 137
Mask, 176, 179, 185
Masking, and shifting, 177
Mauchly, 33
MAXFILES (DOS command), 307
Maximum size, of a stack, 198, 199-200
of main memory, 17
Meanings of 6502 instructions, table,
342-343
Megabyte, 18
Megahertz, 117
Memory, auxiliary, 18
- main, 17
Memory-mapped input-output, 235
Memory-mapped speaker, 243
Microprogramming, 314
Microprocessor, v
Microsecond, 117
Millisecond, 118
Minus one, left half of negative 16-bit
number, 37
Mnemonics, 32, 42
table, 342-343
MOD (function), 129
Mode, decimal, 222-226
Modes, addressing, 42, (table) 350
character, 77
Modification, address, 263-268
immediate data, 269-272
- relative address, 273-275
Modify command (LISA), 154
Monitor (screen), 158
Monitor commands, table, 359
Monitor program, vi, viii, 158
Monitor subroutines, table, 354355
Most significant byte (or digit), 96
Move command (monitor), 151, 163-164
Moving a number, 24, 57
MSB (most significant byte), 96
MULT (subroutine), 125, 171, 174, 193,
230, 266
Multibyte quantities, 20, 37
Multi-digit BCD numbers, 225
Multiplying, 107, 122-128
by a constant, 108, 294
by ten, 107, 116, 210-212
by two, 11, 101, 110, 210-211, 223
in binary, 122
in input conversion, 210
of floating point numbers, 332
of signed numbers, 296-297

of signed numbers by 2, 101
Murphy’s law, 239
Musical notes, 243

N flag, 207
Names for constants (EQU), 82
Names of cells, 18
Names of 6502 instructions, table,
342-343 ,
Names of temporary variables, 212
Names of variables and arrays, 61
Negative, of a number, 55
of a 16-bit number, 297 -
Negative indexing, 299-301
Negative numbers, 20, 99
and shifting, 101-102
16-bit, 37
testing for, 92, 186
twos’ complement, 22
Negative (sign) status flag, 207
Nested loops, 237
NEW (LISA command), 311
Nine-bit result of addition, 49
NLS, 311
NMI, 231-232
Non-maskable interrupt, 231-232
Non-terminating fractions, 326-327
NOP, 169
Normal mode (characters), 77
Normal mode, setting (SETNRM), 247
Normalized floating-point numbers,
329-330, 332-333
Not equal, branch on, 63
Not zero, branch on, 70
Number codes, 2
Number of bits, in registers (table), 356
Number of bytes, in an instruction, 140
Number sign (#), 25, 35-36, 196, 256,
260
Numbers, BCD, 222-226
binary, 3, 4-11, (table) 5
decimal, 4
even and odd (in binary), 11
hexadecimal, 12-16, 75
large (greater than 255), 20
line, 60, 154
negative, 20, 99
signed, 22
16-bit, 37
two-byte, 37
Nybbles, 279-282
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OBJ (pseudo-operation), 172
Object code, 172
Object program, 172, 319
Octal system,,44
Odd numbers, in binary, 11

testing for, 102, 186, 187
Odd parity, 113, 303
Offsets, 73-74, 105, 143, 284, 299-301

in long arrays, 260
ON. . .GO TO (BASIC), 273
One-bit, at the end of an odd number, 11
Ones’ eomplement, 21, 99, 183, 200
Opcode, 31
OPEN (DOS command), 307, 311
Opening a file, 307
Operands, 32 :
Operation code, 31, 38, 42, 142, 151
Operation codes, and mnemonics, 32
Operations (instructions), 34
Operations, floating point, 332-334

‘OR, logical, 179

ORA, 179 .
Order, alphabetical, 286
_ascending, 283 -
ORG, 34, 134, 138, 142, 150, 172,
319-320
omitted, 150
Origin (ORG), 34
Out-of-range index, 151
Output, 81-84, 236-238, 302-304
Output conversion, 133-135, 214-217
Output instructions, 236-238
Output queue, 239
Overflow, in DECI, 210
in division, 129-130
of a stack, 208
Overflow status flag, 188-191, 223, 228,
(table) 342-343  /
Overlap, of program and data sections, 35
Overwriting, 150-151, 251

P register (status register), 227
Packed strings, 225-226
Packing fields into bytes, 179
PAG (pseudo-operation), 311
Page one, 250
Page two, 250
Page zero, 250, 253

indexing in, 252
Pages, 250

Index

Parallel arrays, 104
long, 260
Parameters, in subroutines, 254, 256,
266-268
Parity, 113, 116
tape, 302-304
PASCAL, v—vii, 299, 316, 323-324, 340
Passes, of an assembler, 319
Patch, 169
Patching, 168-171
Paying for computer time, 119
PC (program counter) register, 88
PEEK (in BASIC), 174
Percent sign (%), 25
PHA, 202, 207, 210-211, 215, 220
PHP, 227, 228, 231
“Piano lessons stink,” 1
PLA, 202, 207, 210-211, 215, 220
PL/, v, vii, 292, 340
PLP, 227, 228, 231
Point (to), 257
Point, binary, 326-327, 333
fixed, 327
floating, 329-336
Pointer, 256-257
POKE (in BASIC), 173-174
Polling, 239-241
“Popping” (pulling), 198, 200
Positive numbers, in twos’ complement,
22
Post-indexed indirect addressing,
256-258, 277
Power of computers, secrets of, 118
Powers of 2, table, 5
Powers of 16, 12
PRBL2, 135
PRBYTE, 281
Preamble, 266
example, 268
Pre-indexed indirect addressing, 253-255
Preserving a register, 193
PRHEX, 281
PRINT, with control-D (in BASIC), 173
Printers, 236
Printing nybbles, 281
Priority of interrupts, 231
PRNTAX, 281
Processing, typeless, 335-336
Program, calling, 195
interactive, 138
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object, 172, 319
recursive, 220
source, 172, 319
Program counter, 88, 94
simulated, 314, 319-320
Program section, 35, 138, 150, 152
Program status word, 227
Program timing, 116
Programmer time, and tradeoffs, 120
Programming, real-time, 243
structured, 322-324
Programs, complete, 137-139
equivalent, 59
input-output conversion, 210-217
real-time, 119 ,
Prompt character, 154, 158, 251
Pseudo-operations, 34, 320
table, 348349
PSW (program status word), 227
Pull A register (PLA), 202
Pull P register (PLP), 227
Pulling, 198, 203, 208, 212, 215
figure, 199
Pulsed speaker or LED, 245
Pure interpreter, 317
Push A register (PHA), 202
Push P register (PHP), 227
Pushing, 198, 200, 203, 208, 215, 275
figure, 199

Queens, eight, 337-338

Queues and polling, 239-241

“Quick and dirty” programs, 120

Quotes, double, 78, 8687
single, 79, 87

Quotient, in division, 129

RAM, 264

“Random-access memory”’ (RAM), 264

Random numbers, 333 )

RDKEY, 81, 82, 125, 133, 137, 162, 166,
192, 233, 251, 307, 333

READ (DOS command), 307

Read-only memory (ROM), 230, 264

Reading a diskette, 19

Reading from memory (loading), 236

Ready flags, 234, 237, 239

Real numbers, 329-336

Real-time programs, 119, 243

Record, 307

Recursive programs, 220
Reference, forward (EQU), 271
Register assignment, 67, 108
Register, status, 227-229
Registers, 17
index, 41, 47
internal, 88
running out of, 193
simulated, 313
table of, 356
used by subroutines for their own pur-
poses, 82-83, 135"
using as few as possible, 106
Relation between carry and borrow, 51-53
Relative address modification, 273-275
Relative addresses, 89, 143
Remainder, in division, 124, 129
Remiote job entry, 138
Removing a breakpoint, 162
Repeat key (REPT), 155
REPEAT-UNTIL, 323
Repeatable errors, 145
Replacement, of a field of a byte, 183
Representation, fixed point, 327
floating point, 329
Representations of negative numbers,
20-21
Reserved keywords, 316
Reset interrupts, 231
Reset key, 163,-231
Resetting (clearing), 48
Restoring, see Saving and restoring
Return (carriage), character, 78, 86
Return (instruction), 127
Return address, 195, 202, 220
Return from interrupt, 231
Reverse order, of pulling versus pushing,
203
Reversed bytes, 31, 142, 196, 202, 226,
. 230, 266
Right arrow (=), 155, 156
Right half, 37, 196
Right shift, 101
Right-to-left bit processing, 113
Rightmost 8 bits, used by BYT, 85
Ring buffer, 241
RNDH, 333
RNDL, 333
ROL, 110, 131, 178
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ROM (read-only memory), 230, 264

ROR, 111, 127, 290

Rotate left, 110

Rotate right, 111 °*

Rotation, 110'

Rounding up and rounding down,
102-103

Routine, see Program, Subroutine

Routine, polling, 241

Row representation, of a double array, 292

RTT, 231

RTS, 127, 138, 150, 194-197, 202, 207,
231

Run a program, to, 34

“Running into” data, 150

Running out of registers, 193

S (monitor command), 158
S (register—stack pointer), 202
S (sign flag), in status register, 227

SAVE command,,in LISA, 155

Saving and restoring, 83, 112, 139, 172,
192-194, 200, 202, 208, 212, 218,
220, 228, 230-231, 270 ‘

Saving X and Y, 202-203

SBC, 51-56, 70, 71, 188, 223

Search, binary, 165-166, 289-291

example, 291
Searching a sorted array, 289-291
Searching an array of strings, 277, 278
SEC (set carry), 48, 54, 63, 108, 131
Secret code, 1, 79 f
Sections, program and data, 35
SED, 222
SEI, 231
Semicolon, 58, 87

line starting with, 126, 130
Semi-interpreter, 317 y
Serial arrays, 104 -
" long, 260
Set carry (SEC), 48
Set decimal mode (SED), 222
Set interrupt flag (SEID), 231
Set inverse mode (SETINV), 247
Set normal mode (SETNRM), 247
Setting a breakpoint, 162
Setting bits to 1, 179
Setting (to 1), 48
Seven-segment display, 244-245
“Sexadecimal” system, 12

Index

Shift, 101-103, 107-115, 223
arithmetic, 102, 111
double, 110-111
left, 101
logical, 102
right, 101
sign-extending, 111
Shifting, and masking, 177
by more than one bit, 103
in floating point addition and subtrac-
“ tion, 333
of 16-bit quantities, 110
“Short format™ (floating point), 329
Side effect, 29
Sign, of floating point numbers, 329, 333
of integers, 20
Sign-extending shift, 111
Sign status flag, 92, 94, 103, 112, 178,
180, 186, 223
~ table, 342:-3
Signed comiparisons, 182-183, 189, 297
Signed magnitude representation, 20
Signed numbers, 22
comparison of, 189
16-bit, 296-298
Significant, 96
Simulators, 313-315
Simultaneous input, processing, and out-
put, 239
Sirigle error correction, 304
Single quotes, 79, 87
Six. characters, maximum label length,
LISA 1.5, 60
Sixteen, system with base, 12
16-bit addition, 48, 210-212, 214
16-bit addresses, 17
16-bit comparisons, 96
16-bit decrement, 98-99
16-bit increment, 98-99, 263
16-bit numbers, 37
arrays of, 104
in multiplication and division,
122-123, 125-131
16-bit shifting, 110-111, 210-212
16-bit signed numbers, 296-298
16-bit subtraction, 54-55, 214
16-bit zero test, 180
Slash (/), 196, 256, 260
SNOBOL, 22, 336
Sorted array, 289-291
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Sorted table, 166
Sorting, 283-288
examples, 285, 287
in-place, 283
Source code, 172
Source program, 319
Space, to start and stop listings, 155, 159
Space, versus time, 116
Space-time tradeoffs, 119
Speaker, 243
Specxal characters, 77
in labels, 61
in LISA (table), 350
Speed, of assembly language programs,
118
STA, 24, 70
Stack, 198-221, 239 241, 267-268
empty, 200
full, 201
hardware, 202
in recursive program, 220
upside-down, 199
Stack-oriented instructions, 202-203
Stack pointer, 202
Stack space, available, 207
Standard input buffer, 81, 86, 134, 163
Starting addresses, 152, 173
Statement labels; 60
Statements, 24
and commands, 154
Status flag, 94, 227-229, (tables)
342-343, 356
carry, 47, 52, 54, 60, 102, 127, 131,
188, 223, 280, 288
interrupt, 231
negative (sign), 207
overflow, 188-191, 223, 228
sign, 92, 94, 103, 112, 178, 180, 186,
223
zero, 64, 66, 7072, 103, 112, 176,
180, 185, 186, 223, 300
Status register, 227-229
Status registers for input-output, 234, 237
Stepping, 168
Stepping and tracing, 158, 168, 228
Stored program concept, 33
Storing, 24, 38
and carry status, 52
STR, 248
String declarations, 85, 247-249
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Strings of characters, 78, 85, 286288
arrays of, 276-278
packed, 225-226
.. unpacked, 225
Strobe, keyboard, 234
Structured programming, 322-324
STX, 24, 70
STY, 24, 70
Subroutine parameters, 266268
Subroutines, §1-84, 129, 134, 192-221
floating point, 332-334
‘for multiplication and division, 122

- levels of, 203, 218-221, (tables) 204,

219

with parameters, 254, 256
Subscript, constant, 40, 67-68

variable, 41
Subscript containing constants, 74
Subscripted variables, 40-42
Subtracting constants, 55
Subtracting 8-bit numbers, 54-56

from 16-bit numbers, 62
Subtracting floating point numbers, 333
Subtracting in base 256, 44
Subtracting in binary, 9

table, 10
Subtracting in hexadecimal, 15

_Subtracting 1 (decrementing), 28

Subtracting 16-bit numbers, 54-55
Subtracting 2, 29
Subtraction, 54-56
and twos’ complement, 99
in comparing, 63
of signed 16-bit numbers, 296
used in division, 130-131
SWEETI6, 314, 317
Symbol table, in an assembler, 319
System, binary number, 44
decimal number, 4, 44
hexadecimal, 12, 44
octal number, 44
with base 256, 4446

T (monitor command), 159
Table, address, 287288

symbol (in an assembler), 319
Table lookup, 116, 294
Tape, 302-304
TAX, 57, 70
TAY, 57, 70
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Telephone line break principle, 165-167
Temporary locations (variables), 107,
139, 208, 212, 251
Tens’ complement, 223
Terminating fractions, 326-327
Testing bits, 176 v
Text files, 307, 310-312
Three numbers, adding, 48
subtracting, 55
“Tight” (limited memory space), 207
Time, .in cycles and in microseconds,
116-117
Timing, éxamples, 117-118
of branches and indexed instructions,
117
table, 344-345
Timing calculations, imprecision of, 120
Timing comparisons, examples,
119-120, 185-186, 273-274
Tokens, 317
Top of the stack, IQS, 199, 200, 203
Top-down design, 323
Tracing, 158-159
Tradeoffs, space-time, 119
Transfer instructions, 57, 203-204
Translating assembly language, 34
“True” (value of logical flag), 284
Truth tables, 176, 179, 182
TSX, 203, 208
TTL (in LISA 2.5), 311
Two-byte numbers, see 16-bit numbers
Two-dimensional arrflys, 292-295
2535, incrementing, 29
Twos’ complement, 21, 89, 99, 180, 183
Twos’ complement representation, 22
TXA, 57,70
TXS, 203-204, 207
TYA, 57, 70
Type code, in typeless progessing, 335
Typeless processing, 335-336

Unconditional jump, 64
Unending (non-terminating) fractions,
326-327
Unequal (not equal), branch on, 63
Unpacked strings, 225, 226
Unpacking bytes into fields, 179
Upper half, 47, 105, 110-111
of a 16-bit quantity, 37
Upside-down queue, 242

Index

Upside-down stack, 199
Use, of a register, 29

V (overflow flag), 188
ih status register, 227
Values for variables (with BYT), 85
Variable names, 61
and hexadecimal numbers, 16
Variable subscripts, 41, 67-68
Variables, saved and restored, 192-194
subscripted, 4043, 64
temporary, 212
Verify command (monitor), 151, 163—164
Vertical parity bits, 302-303
VIC-20, v, 233
VISICALC, vii, 247
Von Neumann, 33

W (LISA command), 310

WAIT (subroutirie), 237

Wait loop, 236-237, 243-244"

Walkthroughs, 145-149, 324
example, 146
figure, 147

WHILE-DOQ, 323

Word (computer), 18

Word (English), 78

WRITE (DOS command), 307, 311

" Writing into memory (storing), 236

Xregister, 17, 24, 25, 28,41, 47, 63, 67,
70, 82, 88, 94, 102, 104, 106, 123,
125,129, 134,135,139, 186, 192,
203-204, 253, 254

XOR (instead of EOR), 184

Y register, 17, 24, 25, 28, 41,47, 63, 70,
82, 88,94, 102, 104, 106, 123, 129,
186, 250, 253, 256

Z-80, 207, 235
Zero, division by, 123, 129-130
setting bits to, 176
Zero-bit, at the end of an even number, 11
Zero-page instructions, 250-252, 288
Zero status flag, 64, 66, 70-72, 94, 103,
112, 176, 180, 185, 186, 223, 300
table, 3423
Zeroes, leading, 9, 37, 215-216



APPLE ASSEMBLY LANGUAGE DISKETTE

All of the programs and fragments of programs in this book are included in the
diskette. They are in several files, each one of which is entitled “Sectionsmton, ”
abbreviated, for proper interface with the APPLE Disk Operating System, as
SmTn. Thus, for example, the file whose name is S41T42 contains programs from
sections 41 and 42. .
These is also, on the diskette, a program called STEP. This is to be used on any
APPLE which does not have the step and trace functions described in section 47.
Directions for using STEP are given as comments with STEP; you can see these
comments by loading STEP and listing it.
To order, please return the order form below with check or credit card
information.

To utilize the diskette, you must order the LISA Assembler.*
For further information contact Computer Science Press.

“Apple’’ is a registered trademark of Apple Computer, Inc.

* Ordering Information

Call (301) 251-9050 or write to Computer Science Press, Inc., 1803 Research Boulevard, Rockville, Maryland
20850, to order our publications. Ask for our complete catalog of quality books at all levels from introductory to
the advanced levels.

QUAN. PRICE
APPLE ASSEMBLY LANGUAGE DISKETTE @ $17.00 -
W. Douglas Maurer
ISBN 0-914894-85-4
LISA Assembler (manual and software) @ $79.95
by LAZERWARE
Subtotal
Postage and Handling $2.00
Total
D Payment enclosed OVISANo, — O MasterCard No.
Signature Expiration date
Name
Address
City State Zip
ALL ORDERS FROM INDIVIDUALS MUST BE PREPAID .
O Add my name to your mailing list. O Send me your current catalog.
COMPUTER SCIENCE PRESS, INC., 1803 Research Boulevard Rockville, MD 20850,

USA - (301) 251-9050
Appropriate state and local taxes apply. All prices shown are subject to change without notice.




ABOUT THE BOOK

APPLE Assembly Language is one of the most complete, professional, and
best written books on the assembly language of the APPLE II (11 Plus, I1e)
computer, the most popular computer in the world today. The book has
been classroom tested at the university level and the material, accom-
panied by 300 exercises (with solutions to half of them), is suitable for a
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edgeisrequired. The LISA assembler for the APPLE II (no relation to the
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Apple

“An excellent, well-organized introductory text for college and high school
courses.” —Computer Book Review

“This book is SUPER because it is written as a teaching text with a voluminous
amount of problems for the student.” —Washington ApplePi
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ABOUT THE AUTHOR

W. Douglas Maurer received his B.S. degree from the University of
Chicago and his Ph.D. from the University of California, Berkeley, in
1965. He taught at Berkeley for seven years before joining the faculty at
the George Washington University, where he is now a professor in the
Department of Electrical Engineering and Computer Science. Dr. Maur-
eris a frequent contributor to BYTE, and has done extensive research on
the mathematical theory of the correctness of computer programs.

ABOUT THE APPLE ASSEMBLY LANGUAGE
DISKETTE

A diskette to accompany APPLE Assembly Language is available from the
publisher (see order form in the back of the book). All programs and
fragments of programs are included in the diskette. The use of this
diskette requires the assembler discussed in the book, the LISA assembler
for the APPLE II Plus or the APPLE Ile computer.
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